Synthesis of multi-color laser pulses has been developed as a promising way to improve low conversion efficiency of high-order harmonic generation(HHG). Here we systematically study the effect of laser focus in a two-...Synthesis of multi-color laser pulses has been developed as a promising way to improve low conversion efficiency of high-order harmonic generation(HHG). Here we systematically study the effect of laser focus in a two-color waveform on generation of macroscopic HHG in soft x-rays. We find that the dependence of HHG yields on laser focus at low or high gas pressure is sensitive to the characteristics of single-atom harmonic response, in which “short”-or “long”-trajectory emissions can be selectively controlled by changing the waveform of two-color synthesized laser pulse. We uncover the phase-matching mechanism of HHG in the gas medium by examining the propagation of the two-color waveform and the evolution of time-frequency emissions of high-harmonic field. We further reveal that the nonlinear effects, such as geometric phase, atomic dispersion, and plasma defocusing, are responsible for modification of two-color waveform upon propagation. This work can be used to find better macroscopic conditions for generating soft x-ray HHG by employing two-color optimized waveforms.展开更多
By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular wavefo...By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular waveform and pulsed output wave superimposed on a rectangular waveform on the penetration depth of weld. Research results indicate that the average power, duty cycle, frequency and peak power of rectangular wave affect the weld penetration depth to different extent. Results of experiments and analysis also indicate that the pulse delay time, pulse width and the power ratio of pulse to rectangular waveform seriously influence the penetration when the pulsed wave is superimposed on a rectangular waveform.展开更多
We theoretically investigate high-order harmonic and attosecond pulse generation from helium atom in a three-color laser field, which is synthesized by 10 fs/800 nm Ti-sapphire laser and a two-color field consisting o...We theoretically investigate high-order harmonic and attosecond pulse generation from helium atom in a three-color laser field, which is synthesized by 10 fs/800 nm Ti-sapphire laser and a two-color field consisting of 30 fs/532 nm and 30 fs/1330 nm pulses. Compared with harmonic spectrum generated by a monochromatic field, the harmonics generated from the synthesized three-color field show a supercontinuum spectrum with a bandwidth of 235 eV, ranging from the 154th to the 306th order harmonic. This phenomenon can be attributed to the fact that the ionization of atoms as well as motion of ionized electron can be effectively controlled in the three-color field. Therefore, an isolated 46-as pulse can be generated by superposing supercontinuum from the 160th to the 210th order harmonics.展开更多
In the scheme of fast ignition of inertial confinement fusion,the fuel temperature mainly relies on fast electrons,which act as an energy carrier,transferring the laser energy to the fuel.Both conversion efficiency fr...In the scheme of fast ignition of inertial confinement fusion,the fuel temperature mainly relies on fast electrons,which act as an energy carrier,transferring the laser energy to the fuel.Both conversion efficiency from the laser to the fast electron and the energy spectrum of the fast electron are essentially important to achieve highly effective heating.In this study,a two-dimensional particle in cell simulation is applied to study the generation of fast electrons from solid-density plasmas with different laser waveforms.The results have shown that the slope of the rising edge has a significant effect on fast electron generation and energy absorption.For the negative skew pulse with a relatively slow rising edge,the J×B mechanism can most effectively accelerate the electrons.The overall absorption efficiency of the laser energy is optimized,and the fast electron yield in the middle-and low-energy range is also improved.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.91950102,12274230,and 11834004)the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005)。
文摘Synthesis of multi-color laser pulses has been developed as a promising way to improve low conversion efficiency of high-order harmonic generation(HHG). Here we systematically study the effect of laser focus in a two-color waveform on generation of macroscopic HHG in soft x-rays. We find that the dependence of HHG yields on laser focus at low or high gas pressure is sensitive to the characteristics of single-atom harmonic response, in which “short”-or “long”-trajectory emissions can be selectively controlled by changing the waveform of two-color synthesized laser pulse. We uncover the phase-matching mechanism of HHG in the gas medium by examining the propagation of the two-color waveform and the evolution of time-frequency emissions of high-harmonic field. We further reveal that the nonlinear effects, such as geometric phase, atomic dispersion, and plasma defocusing, are responsible for modification of two-color waveform upon propagation. This work can be used to find better macroscopic conditions for generating soft x-ray HHG by employing two-color optimized waveforms.
基金Sponsored by National Science Fund!( 59881 0 0 2 )
文摘By using a Nd: YAG laser welding system devised for transmitting continuous, rectangular and pulsed waveforms, comprehensive and deep investigation is focused on the effects of several parameters of rectangular waveform and pulsed output wave superimposed on a rectangular waveform on the penetration depth of weld. Research results indicate that the average power, duty cycle, frequency and peak power of rectangular wave affect the weld penetration depth to different extent. Results of experiments and analysis also indicate that the pulse delay time, pulse width and the power ratio of pulse to rectangular waveform seriously influence the penetration when the pulsed wave is superimposed on a rectangular waveform.
基金supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant Nos.11274141,11034003,and 11204020)+1 种基金the Research Foundation for Basic Research of Jilin Province,China(Grant Nos.20130101012JC and 20140101168JC)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130061110021)
文摘We theoretically investigate high-order harmonic and attosecond pulse generation from helium atom in a three-color laser field, which is synthesized by 10 fs/800 nm Ti-sapphire laser and a two-color field consisting of 30 fs/532 nm and 30 fs/1330 nm pulses. Compared with harmonic spectrum generated by a monochromatic field, the harmonics generated from the synthesized three-color field show a supercontinuum spectrum with a bandwidth of 235 eV, ranging from the 154th to the 306th order harmonic. This phenomenon can be attributed to the fact that the ionization of atoms as well as motion of ionized electron can be effectively controlled in the three-color field. Therefore, an isolated 46-as pulse can be generated by superposing supercontinuum from the 160th to the 210th order harmonics.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA25030100 and XDA25051000)the National Natural Science Foundation of China(Nos.U1930107 and 11827807)。
文摘In the scheme of fast ignition of inertial confinement fusion,the fuel temperature mainly relies on fast electrons,which act as an energy carrier,transferring the laser energy to the fuel.Both conversion efficiency from the laser to the fast electron and the energy spectrum of the fast electron are essentially important to achieve highly effective heating.In this study,a two-dimensional particle in cell simulation is applied to study the generation of fast electrons from solid-density plasmas with different laser waveforms.The results have shown that the slope of the rising edge has a significant effect on fast electron generation and energy absorption.For the negative skew pulse with a relatively slow rising edge,the J×B mechanism can most effectively accelerate the electrons.The overall absorption efficiency of the laser energy is optimized,and the fast electron yield in the middle-and low-energy range is also improved.