Non-rigid registration of point clouds is still far from stable,especially for the largely deformed one.Sparse initial correspondences are often adopted to facilitate the process.However,there are few studies on how t...Non-rigid registration of point clouds is still far from stable,especially for the largely deformed one.Sparse initial correspondences are often adopted to facilitate the process.However,there are few studies on how to build them automatically.Therefore,in this paper,we propose a robust method to compute such priors automatically,where a global and local combined strategy is adopted.These priors in different degrees of deformation are obtained by the locally geometrical-consistent point matches from the globally structural-consistent region correspondences.To further utilize the matches,this paper also proposes a novel registration method based on the Coherent Point Drift framework.This method takes both the spatial proximity and local structural consistency of the priors as supervision of the registration process and thus obtains a robust alignment for clouds with significantly different deformations.Qualitative and quantitative experiments demonstrate the advantages of the proposed method.展开更多
A mutual information-based non-rigid medical image registration algorithm is presented. An approximate function of Hanning windowed sinc is used as kernel function of partial volume (PV) interpolation to estimate the ...A mutual information-based non-rigid medical image registration algorithm is presented. An approximate function of Hanning windowed sinc is used as kernel function of partial volume (PV) interpolation to estimate the joint histogram, which is the key to calculating the mutual information. And a new method is proposed to compute the gradient of mutual information with respect to the model parameters. The transformation of object is modeled by a free-form deformation (FFD) based on B-splines. The experiments on 3D synthetic and real image data show that the algorithm can converge at the global optimum and restrain the emergency of local extreme.展开更多
The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CN...The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CNR) of hybrid gradient-echo echoplanar (GRE-EPI) first-pass myocardial perfusion imaging. Twenty one consecutive first-pass adenosine stress perfusion MR data sets interpreted positive for ischemia or infarction were processed by non-rigid Registration followed by KLT filtering. SNR and CNR were measured in abnormal and normal myocardium in unfiltered and KLT filtered images following nonrigid registration to compensate for respiratory and other motions. Image artifacts introduced by filtering in registered and nonregistered images were evaluated by two observers. There was a statistically sig- nificant increase in both SNR and CNR between normal and abnormal myocardium with KLT filtering (mean SNR increased by 62.18% ± 21.05% and mean CNR increased by 58.84% ± 18.06%;p = 0.01). Motion correction prior to KLT filtering reduced significantly the occurrence of filter induced artifacts (KLT only-artifacts in 42 out of 55 image series vs. registered plus KLT-artifacts in 3 out of 55 image series). In conclusion the combination of non-rigid registration and KLT filtering was shown to increase the SNR and CNR of GRE-EPI perfusion images. Subjective evaluation of image artifacts revealed that prior motion compensation significantly reduced the artifacts introduced by the KLT filtering process.展开更多
An intensity-based non-rigid registration algorithm is discussed, which uses Gaussian smoothing to constrain the transformation to be smooth, and thus preserves the topology of images. In view of the insufficiency of ...An intensity-based non-rigid registration algorithm is discussed, which uses Gaussian smoothing to constrain the transformation to be smooth, and thus preserves the topology of images. In view of the insufficiency of the uniform Gaussian filtering of the deformation field, an automatic and accurate non-rigid image registration method based on B-splines approximation is proposed. The regularization strategy is adopted by using multi-level B-splines approximation to regularize the displacement fields in a coarse-to-fine manner. Moreover, it assigns the different weights to the estimated displacements according to their reliabilities. In this way, the level of regularity can be adapted locally. Experiments were performed on both synthetic and real medical images of brain, and the results show that the proposed method improves the registration accuracy and robustness.展开更多
A mutual information based 3D non-rigid registration approach was proposed for the registration of deformable CT/MR body abdomen images. The Parzen Windows Density Estimation (PWDE) method is adopted to calculate the ...A mutual information based 3D non-rigid registration approach was proposed for the registration of deformable CT/MR body abdomen images. The Parzen Windows Density Estimation (PWDE) method is adopted to calculate the mutual information between the two modals of CT and MRI abdomen images. By maximizing MI between the CT and MR volume images, the overlapping part of them reaches the biggest, which means that the two body images of CT and MR matches best to each other. Visible Human Project (VHP) Male abdomen CT and MRI Data are used as experimental data sets. The experimental results indicate that this approach of non-rigid 3D registration of CT/MR body abdominal images can be achieved effectively and automatically, without any prior processing procedures such as segmentation and feature extraction, but has a main drawback of very long computation time.展开更多
In this study,a non-tensor product B-spline algorithm is applied to the search space of the registration process,and a new method of image non-rigid registration is proposed.The tensor product B-spline is a function d...In this study,a non-tensor product B-spline algorithm is applied to the search space of the registration process,and a new method of image non-rigid registration is proposed.The tensor product B-spline is a function defined in the two directions of x and y,while the non-tensor product B-spline S^(1/2)(Δ_(mn)^((2)))is defined in four directions on the 2-type triangulation.For certain problems,using non-tensor product B-splines to describe the non-rigid deformation of an image can more accurately extract the four-directional information of the image,thereby describing the global or local non-rigid deformation of the image in more directions.Indeed,it provides a method to solve the problem of image deformation in multiple directions.In addition,the region of interest of medical images is irregular,and usually no value exists on the boundary triangle.The value of the basis function of the non-tensor product B-spline on the boundary triangle is only 0.The algorithm process is optimized.The algorithm performs completely automatic non-rigid registration of computed tomography and magnetic resonance imaging images of patients.In particular,this study compares the performance of the proposed algorithm with the tensor product B-spline registration algorithm.The results elucidate that the proposed algorithm clearly improves the accuracy.展开更多
Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps...Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.展开更多
Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual informa...Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.展开更多
Accuracy validation is essential to clinical application of medical image registration techniques. Registration validation remains a challenging problem in practice mainly due to lack of 'ground truth'. In thi...Accuracy validation is essential to clinical application of medical image registration techniques. Registration validation remains a challenging problem in practice mainly due to lack of 'ground truth'. In this paper, an overview of current validation methods for medical image registration is presented with detailed discussion of their benefits and drawbacks. Special focus is on non-rigid registration validation. Promising solution is also discussed.展开更多
Optical flow estimation in human facial video,which provides 2D correspondences between adjacent frames,is a fundamental pre-processing step for many applications,like facial expression capture and recognition.However...Optical flow estimation in human facial video,which provides 2D correspondences between adjacent frames,is a fundamental pre-processing step for many applications,like facial expression capture and recognition.However,it is quite challenging as human facial images contain large areas of similar textures,rich expressions,and large rotations.These characteristics also result in the scarcity of large,annotated realworld datasets.We propose a robust and accurate method to learn facial optical flow in a self-supervised manner.Specifically,we utilize various shape priors,including face depth,landmarks,and parsing,to guide the self-supervised learning task via a differentiable nonrigid registration framework.Extensive experiments demonstrate that our method achieves remarkable improvements for facial optical flow estimation in the presence of significant expressions and large rotations.展开更多
The traditional pipeline for non-rigid registration is to iteratively update the correspondence and alignment such that the transformed source surface aligns well with the target surface.Among the pipeline,the corresp...The traditional pipeline for non-rigid registration is to iteratively update the correspondence and alignment such that the transformed source surface aligns well with the target surface.Among the pipeline,the correspondence construction and iterative manner are key to the results,while existing strategies might result in local optima.In this paper,we adopt the widely used deformation graph-based representation,while replacing some key modules with neural learning-based strategies.Specifically,we design a neural network to predict the correspondence and its reliability confidence rather than the strategies like nearest neighbor search and pair rejection.Besides,we adopt the GRU-based recurrent network for iterative refinement,which is more robust than the traditional strategy.The model is trained in a self-supervised manner and thus can be used for arbitrary datasets without ground-truth.Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art methods by a large margin.展开更多
As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-nets...As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-netshape technology has to undergo a tedious iterative error compensation. Thus,if the profile error area and boundary can be determined automatically and quickly,it will help to improve the efficiency of subsequent re-machining correction process. To this end,an error boundary intersection approach is presented aiming at the error area determination of complex profile,including the phaseⅠof cross sectional non-rigid registration based on the minimum error area and the phaseⅡof boundary identification based on triangular meshes intersection. Some practical cases are given to demonstrate the effectiveness and superiority of the proposed approach.展开更多
基金supported by Natural Science Foundation of Anhui Province (2108085MF210,1908085MF187)Key Natural Science Fund of Department of Eduction of Anhui Province (KJ2021A0042)Natural Social Science Foundation of China (19BTY091).
文摘Non-rigid registration of point clouds is still far from stable,especially for the largely deformed one.Sparse initial correspondences are often adopted to facilitate the process.However,there are few studies on how to build them automatically.Therefore,in this paper,we propose a robust method to compute such priors automatically,where a global and local combined strategy is adopted.These priors in different degrees of deformation are obtained by the locally geometrical-consistent point matches from the globally structural-consistent region correspondences.To further utilize the matches,this paper also proposes a novel registration method based on the Coherent Point Drift framework.This method takes both the spatial proximity and local structural consistency of the priors as supervision of the registration process and thus obtains a robust alignment for clouds with significantly different deformations.Qualitative and quantitative experiments demonstrate the advantages of the proposed method.
基金Supported bythe National Basic Research Programof China ("973"Program) (No2003CB716103)Key Project of Shanghai Scienceand Technology Committee(No05DZ19509)
文摘A mutual information-based non-rigid medical image registration algorithm is presented. An approximate function of Hanning windowed sinc is used as kernel function of partial volume (PV) interpolation to estimate the joint histogram, which is the key to calculating the mutual information. And a new method is proposed to compute the gradient of mutual information with respect to the model parameters. The transformation of object is modeled by a free-form deformation (FFD) based on B-splines. The experiments on 3D synthetic and real image data show that the algorithm can converge at the global optimum and restrain the emergency of local extreme.
文摘The purpose of the study was to evaluate the effect of motion compensation by non-rigid registration combined with the Karhunen-Loeve Transform (KLT) filter on the signal to noise (SNR) and contrast-to-noise ratio (CNR) of hybrid gradient-echo echoplanar (GRE-EPI) first-pass myocardial perfusion imaging. Twenty one consecutive first-pass adenosine stress perfusion MR data sets interpreted positive for ischemia or infarction were processed by non-rigid Registration followed by KLT filtering. SNR and CNR were measured in abnormal and normal myocardium in unfiltered and KLT filtered images following nonrigid registration to compensate for respiratory and other motions. Image artifacts introduced by filtering in registered and nonregistered images were evaluated by two observers. There was a statistically sig- nificant increase in both SNR and CNR between normal and abnormal myocardium with KLT filtering (mean SNR increased by 62.18% ± 21.05% and mean CNR increased by 58.84% ± 18.06%;p = 0.01). Motion correction prior to KLT filtering reduced significantly the occurrence of filter induced artifacts (KLT only-artifacts in 42 out of 55 image series vs. registered plus KLT-artifacts in 3 out of 55 image series). In conclusion the combination of non-rigid registration and KLT filtering was shown to increase the SNR and CNR of GRE-EPI perfusion images. Subjective evaluation of image artifacts revealed that prior motion compensation significantly reduced the artifacts introduced by the KLT filtering process.
基金Supported by National Natural Science Foundation of China (No60373061)Joint Programof National Natural Science Foundation of ChinaGeneral Administration of Civil Aviation of China (No60672168)
文摘An intensity-based non-rigid registration algorithm is discussed, which uses Gaussian smoothing to constrain the transformation to be smooth, and thus preserves the topology of images. In view of the insufficiency of the uniform Gaussian filtering of the deformation field, an automatic and accurate non-rigid image registration method based on B-splines approximation is proposed. The regularization strategy is adopted by using multi-level B-splines approximation to regularize the displacement fields in a coarse-to-fine manner. Moreover, it assigns the different weights to the estimated displacements according to their reliabilities. In this way, the level of regularity can be adapted locally. Experiments were performed on both synthetic and real medical images of brain, and the results show that the proposed method improves the registration accuracy and robustness.
基金An international cooperation project between Shanghai Jiaotong U niversity and Hong Kong Polytechnic University
文摘A mutual information based 3D non-rigid registration approach was proposed for the registration of deformable CT/MR body abdomen images. The Parzen Windows Density Estimation (PWDE) method is adopted to calculate the mutual information between the two modals of CT and MRI abdomen images. By maximizing MI between the CT and MR volume images, the overlapping part of them reaches the biggest, which means that the two body images of CT and MR matches best to each other. Visible Human Project (VHP) Male abdomen CT and MRI Data are used as experimental data sets. The experimental results indicate that this approach of non-rigid 3D registration of CT/MR body abdominal images can be achieved effectively and automatically, without any prior processing procedures such as segmentation and feature extraction, but has a main drawback of very long computation time.
基金This research was funded by National Natural Science Foundation of China,No.61702184Ministry of Education Production University Cooperation Education Project,No.201802305012Tangshan Innovation Team Project,No.18130209 B.
文摘In this study,a non-tensor product B-spline algorithm is applied to the search space of the registration process,and a new method of image non-rigid registration is proposed.The tensor product B-spline is a function defined in the two directions of x and y,while the non-tensor product B-spline S^(1/2)(Δ_(mn)^((2)))is defined in four directions on the 2-type triangulation.For certain problems,using non-tensor product B-splines to describe the non-rigid deformation of an image can more accurately extract the four-directional information of the image,thereby describing the global or local non-rigid deformation of the image in more directions.Indeed,it provides a method to solve the problem of image deformation in multiple directions.In addition,the region of interest of medical images is irregular,and usually no value exists on the boundary triangle.The value of the basis function of the non-tensor product B-spline on the boundary triangle is only 0.The algorithm process is optimized.The algorithm performs completely automatic non-rigid registration of computed tomography and magnetic resonance imaging images of patients.In particular,this study compares the performance of the proposed algorithm with the tensor product B-spline registration algorithm.The results elucidate that the proposed algorithm clearly improves the accuracy.
基金the China Scholarship Council under Grant No.201406070059.
文摘Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.
文摘Mutual information is widely used in medical image registration, because it does not require preprocessing the image. However, the local maximum problem in the registration is insurmountable. We combine mutual information and gradient information to solve this problem and apply it to the non-rigid deformation image registration. To improve the accuracy, we provide some implemental issues, for example, the Powell searching algorithm, gray interpolation and consideration of outlier points. The experimental results show the accuracy of the method and the feasibility in non-rigid medical image registration.
基金Supported by National Basic Research Program of China Grant(2011CB707701)National Natural Science Foundation of China(81127003)
文摘Accuracy validation is essential to clinical application of medical image registration techniques. Registration validation remains a challenging problem in practice mainly due to lack of 'ground truth'. In this paper, an overview of current validation methods for medical image registration is presented with detailed discussion of their benefits and drawbacks. Special focus is on non-rigid registration validation. Promising solution is also discussed.
基金This work was supported by National Natural Science Foundation of China(No.62122071)the Youth Innovation Promotion Association CAS(No.2018495)+1 种基金the Fundamental Research Funds for the Central Universities(No.WK3470000021)through the Alibaba Innovation Research Program(AIR).
文摘Optical flow estimation in human facial video,which provides 2D correspondences between adjacent frames,is a fundamental pre-processing step for many applications,like facial expression capture and recognition.However,it is quite challenging as human facial images contain large areas of similar textures,rich expressions,and large rotations.These characteristics also result in the scarcity of large,annotated realworld datasets.We propose a robust and accurate method to learn facial optical flow in a self-supervised manner.Specifically,we utilize various shape priors,including face depth,landmarks,and parsing,to guide the self-supervised learning task via a differentiable nonrigid registration framework.Extensive experiments demonstrate that our method achieves remarkable improvements for facial optical flow estimation in the presence of significant expressions and large rotations.
基金supported by National Natural Science Foundation of China(No.62122071)the Youth Innovation Promotion Association CAS(No.2018495)“the Fundamental Research Funds for the Central Universities”(No.WK3470000021).
文摘The traditional pipeline for non-rigid registration is to iteratively update the correspondence and alignment such that the transformed source surface aligns well with the target surface.Among the pipeline,the correspondence construction and iterative manner are key to the results,while existing strategies might result in local optima.In this paper,we adopt the widely used deformation graph-based representation,while replacing some key modules with neural learning-based strategies.Specifically,we design a neural network to predict the correspondence and its reliability confidence rather than the strategies like nearest neighbor search and pair rejection.Besides,we adopt the GRU-based recurrent network for iterative refinement,which is more robust than the traditional strategy.The model is trained in a self-supervised manner and thus can be used for arbitrary datasets without ground-truth.Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art methods by a large margin.
基金supported by the Aeronautical Science Foundation of China (No.20200016112001)。
文摘As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-netshape technology has to undergo a tedious iterative error compensation. Thus,if the profile error area and boundary can be determined automatically and quickly,it will help to improve the efficiency of subsequent re-machining correction process. To this end,an error boundary intersection approach is presented aiming at the error area determination of complex profile,including the phaseⅠof cross sectional non-rigid registration based on the minimum error area and the phaseⅡof boundary identification based on triangular meshes intersection. Some practical cases are given to demonstrate the effectiveness and superiority of the proposed approach.