Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible...Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi...The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.展开更多
Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lu...Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .展开更多
Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. ...Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. Each well of the 24-well cell culture plate was cover-slipped. Matrigel diluted with se- rum-free DMEM was added and HCCLM9 cells were cultured on the Matrigel. The cell morphological and cell growth characteristics were observed by inverted microscopy and laser confocal microscopy at different culture time. Cell invasive features were monitored by QDs-based real-time molecular imaging techniques. The results showed that on this 3D cell culture platform, HCCLM9 cells exhibited typical multi-step invasive behaviors, including reversion of cell senescence, active focal proliferation and dominant clones invasion. During the process, cells under 3D cell culture showed biological behaviors of spatio-temporal characteristics. Cells first merged on the surface of matrix, then gradually infiltrated and migrated into deep part of matrix, presenting polygonal morphology with stretched protrusions, forming tubular, annular and even network structure, which suggested that HCC cells have the morpho- logical basis for vasculogenic mimicry. In addition, small cell clones with their edges well-circumscribed in early stage, progressed into a large irregular clone with ill-defined edge, while the other cells developed invadopodia. And QDs probing showed MT1-MMP was strongly expressed in the invadopodia. These findings indicate that a novel 3D cell culture platform has been successfully estab- lished, which can mimic the in vivo tumor microenvironment, and when combined with QDs-based mo- lecular imaging, it can help to better investigate the invasive behaviors of HCC cells.展开更多
Objective Newly identified human rhinovirus C (HRV-C) and human bocavirus (HBoV) cannot propagate in vitro in traditional cell culture models; thus obtaining knowledge about these viruses and developing related va...Objective Newly identified human rhinovirus C (HRV-C) and human bocavirus (HBoV) cannot propagate in vitro in traditional cell culture models; thus obtaining knowledge about these viruses and developing related vaccines are difficult. Therefore, it is necessary to develop a novel platform for the propagation of these types of viruses.Methods A platform for culturing human airway epithelia in a three-dimensional (3D) pattern using Matrigel as scaffold was developed. The features of 3D culture were identified by immunochemical staining and transmission electron microscopy. Nucleic acid levels of HRV-C and HBoV in 3D cells at designated time points were quantitated by real-time polymerase chain reaction {PCR). Levels of cytokines, whose secretion was induced by the viruses, were measured by ELISA.Results Properties of bronchial-like tissues, such as the expression of biomarkers CK5, ZO-2, and PCK, and the development of cilium-like protuberances indicative of the human respiration tract, were observed in 3D-cultured human airway epithelial (HAE) cultures, but not in monolayer-cultured cells. Nucleic acid levels of HRV-C and HBoV and levels of virus-induced cytokines were also measured using the 3D culture system.Conclusion Our data provide a preliminary indication that the 3D culture model of primary epithelia using a Matrigel scaffold in vitro can be used to propagate HRV-C and HBoV.展开更多
In this work, patterned macropores with a diameter larger than 100 μm were introduced to pristine three-dimensional (3D) nanofibrous bacterial cellulose (BC) scaffolds by using the infrared laser micromachining techn...In this work, patterned macropores with a diameter larger than 100 μm were introduced to pristine three-dimensional (3D) nanofibrous bacterial cellulose (BC) scaffolds by using the infrared laser micromachining technique in an attempt to create an in vitro model for the culture of breast cancer cells. The morphology, pore structure, and mechanical performance of the obtained patterned macroporous BC (PM-BC) scaffolds were characterized by scanning electron microscopy (SEM), mercury intrusion porosimeter, and mechanical testing. A human breast cancer cell (MDA-MB-231) line was cultured onto the PM-BC scaffolds to investigate the role of macropores in the control of cancer cell behavior. MTT assay, SEM, and hematoxylin and eosin (H&E) staining were employed to determine cell adhesion, growth, proliferation, and infiltration. The PM-BC scaffolds were found to be able to promote cellular adhesion and proliferation on the scaffolds, and further to allow for cell infiltration into the PM-BC scaffolds. The results demonstrated that BC scaffolds with laser-patterned macropores were promising for the in vitro 3D culture of breast cancer cells.展开更多
The presence of endometrial tissue outside of the uterine cavity is named endometriosis and is the most common gynecologic disorder in women. Determining the inhibitory effect of a Deforolimus on angiogenesis in a thr...The presence of endometrial tissue outside of the uterine cavity is named endometriosis and is the most common gynecologic disorder in women. Determining the inhibitory effect of a Deforolimus on angiogenesis in a three-dimensional (3-D) culture of human endometrial stromal cells (hEnCs) in vitro. The important mechanism in the pathogenesis of endometriosis is angiogenesis, and deforolimus has been shown to have anti-angiogenic activity. This was an in vitro study of human endometrial stromal cells in 3-D culture of fibrin matrix. Endometrial stromal cells isolated and placed in a 3-D fibrin matrix culture system for angiogenesis with VEGF and inhibit angiogenesis by deforolimus. Finally these cells analyzed by CD31 antibodies. After 3 weeks, in cells treated with VEGF, endothelial cell branching was observed and rudimentary capillary-like structures formed. In the presence of 5μM of deforolimus, angiogenesis was reduced. The deforolimus were shown to be effective in inhibiting the mechanisms of angiogenesis.展开更多
Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes ametho...Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.展开更多
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t...Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear...The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.展开更多
Crab cell line,especially continuous crab cell line,can provide us a useful tool for studies on the virology,immunology,and molecular biology of crabs.However,no continuous crab cell line has been available due to the...Crab cell line,especially continuous crab cell line,can provide us a useful tool for studies on the virology,immunology,and molecular biology of crabs.However,no continuous crab cell line has been available due to the lacking of suitable medium and the occurrence of mitosis-arrest.In this study,long-term in vitro culture conditions for both two-(2D)and three-dimensions(3D)were successfully developed for the circulating hemocytes of swimming crab Portunus trituberculatus,designated as PTH cells.In 2D culture,a novel crab basic medium in osmolarity of 990–1100 mOsm/kg was optimized for the first time,which is different from Leibovitz's L-15 medium in mainly the components of amino acids,containing double strengths of the contents of free amino acid mixture in the crab serum.Then an optimal crab growth medium was developed by supplementing 5%fetal bovine serum,50-g/L yeast extract powder,20-μg/L basic fibroblast growth factor and epidermal growth factor into the optimal crab basic medium,and found that it could support a long-term survival of PTH cells in a healthy monolayer up to 347 days and partially break through the mitosis-arrest of crab cells evidenced by the obvious increase of proliferating potential detected in the 10-d primarily cultured PTH cells.These 2D cultured PTH cells could be successfully sub-cultured for 11 times by physical flushing method and well cryopreserved in liquid nitrogen.In 3D culture,using the same crab growth medium,the PTH cell aggregates could be easily formed and healthily maintained on the surface of solidified Matrigel or in the ultra-low-attachment plate with a survival rate of 50%–60%on Day 103.This work largely improved the primary culture and subculture of crab cells and will facilitate the establishment of continuous crab cell line.展开更多
Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be con...Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).展开更多
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is...This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.展开更多
The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity i...The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.展开更多
Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic...Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic cells maintain a close association throughout spermatogenesis and this association is necessary for normal spermatogenesis. In order to keep the relative integrity of the testicular tissues, and to detect the development in vitro, culture testicular tissues in a three- dimensional (3D) agarose matrix was examined. Testicular tissues isolated from 6.5 d postpartum (dpp) mouse were cultured on the top of the matrix for 26 d with a medium height up to 4/5 of the 3D agarose matrix. The results showed that in this 3D culture environment, each type of testicular cells kept the same structure, localization and function as in vivo and might be more biologically relevant to living organisms. After culture, germ cell marker VASA and meiosis markers DAZL and SCP3 showed typical positive analysed by immunofluorescence staining and RT-PCR. It demonstrated that this 3D culture system was able to maintain the number of germ cells and promote the meiosis initiation of male germ cells.展开更多
To screen for additional treatment targets against tongue cancer, we evaluated the contributions of extracellular signal-related kinase(ERK), AKT and ezrin in cancer development. Immunohistochemical staining showed th...To screen for additional treatment targets against tongue cancer, we evaluated the contributions of extracellular signal-related kinase(ERK), AKT and ezrin in cancer development. Immunohistochemical staining showed that ERK and ezrin expressions were significantly higher in invasive squamous cell carcinoma than in carcinoma in situ. To investigate the roles of ERK and ezrin in cancer development, we used the non-woven silica fibre sheet Cellbedwith a structure resembling the loose connective tissue morphology in a novel 3 D culture system. We confirmed that the 3 D system using CellbedTMaccurately mimicked cancer cell morphology in vivo. Furthermore, cell projections were much more apparent in 3 D-cultured tongue cancer cell lines than in 2 D cultures. Typically, under conventional 2 D culture conditions, F-actin and cortactin are colocalized in the form of puncta within cells.However, in the 3 D-cultured cells, colocalization was mainly observed at the cell margins, including the projections. Projections containing F-actin and cortactin colocalization were predicted to be invadopodia. Although suppressing ezrin expression with small interfering RNA transfection caused no marked changes in morphology, cell projection formation was decreased, and the tumour thickness in vertical sections after 3 D culture was markedly decreased after suppressing ERK activity because both the invasion ability and proliferation were inhibited. An association between cortactin activation as well as ERK activity and invadopodia formation was detected. Our novel 3 D culture systems using Cellbed? are simple and useful for in vitro studies before conducting animal experiments. ERK contributes to tongue cancer development by increasing both cancer cell proliferation and migration via cortactin activation.展开更多
Damage in central nervous system plays an important role in biological life and causes severe paralysis of limbs and some organs. There are solutions to problems that can be a great revolution in the transplanted spin...Damage in central nervous system plays an important role in biological life and causes severe paralysis of limbs and some organs. There are solutions to problems that can be a great revolution in the transplanted spinal cord and nerve injuries. Schwann cells (SCs) have important roles in development, myelination and regeneration in the peripheral nervous system. The applications of SCs in regenerative medicine are limited because of slow growth rate and difficulties in harvesting. Critical to the hypothesis is the experimental fact that human endometrial-derived stem cells (hEnSCs) as multipotent accessible source of cells are known as useful cell candidates in the field of nerve tissue engineering. We decided to use the three-dimensional culture of Schwann cells differentiated from endometrial stem cell in fibrin gel. In this study, we investigate the expression of differentiated Schwann cell markers by exposing of endometrial stem cells with induction media including FGF2/FSK/HRG/RA. Using immunocytochemistry, we show that differentiated cells express S100 and P75 markers. These results show that for the first time, human endometrial stem cells can be differentiated into Schwann cells in 2D and 3D culture. These novel differentiated cells in fibrin gel might open new opportunities for the management of cell survival and neurotrophic potential in tissue engineering approaches for nerve repair.展开更多
基金support from the National Key Research and Development Program of China(Grant No.2017YFA0700501),and the Innovation Fund of WNLO.
文摘Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
基金supported by the National Natural Science Foundation of China (No.52374124)National Youth Science Foundation of China (No.52204135)+3 种基金Xing Liao Talent Plan (No.XLYC2202004)Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)Liaoning Province International Science and Technology Cooperation Plan (No.2022JH2/1070004)Liaoning Natural Science Foundation Program (No.2022-BS-327)。
文摘The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.
文摘Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .
基金supported by grants from National Natural Science Foundation of China(No.81171396)Creative Research Groups of the National Natural Science Foundation of China(No.20921062)+1 种基金National Science and Technology Major Project(No.2012ZX10002012-12)National University Students Innovation Training Project of China(No.111048673)
文摘Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. Each well of the 24-well cell culture plate was cover-slipped. Matrigel diluted with se- rum-free DMEM was added and HCCLM9 cells were cultured on the Matrigel. The cell morphological and cell growth characteristics were observed by inverted microscopy and laser confocal microscopy at different culture time. Cell invasive features were monitored by QDs-based real-time molecular imaging techniques. The results showed that on this 3D cell culture platform, HCCLM9 cells exhibited typical multi-step invasive behaviors, including reversion of cell senescence, active focal proliferation and dominant clones invasion. During the process, cells under 3D cell culture showed biological behaviors of spatio-temporal characteristics. Cells first merged on the surface of matrix, then gradually infiltrated and migrated into deep part of matrix, presenting polygonal morphology with stretched protrusions, forming tubular, annular and even network structure, which suggested that HCC cells have the morpho- logical basis for vasculogenic mimicry. In addition, small cell clones with their edges well-circumscribed in early stage, progressed into a large irregular clone with ill-defined edge, while the other cells developed invadopodia. And QDs probing showed MT1-MMP was strongly expressed in the invadopodia. These findings indicate that a novel 3D cell culture platform has been successfully estab- lished, which can mimic the in vivo tumor microenvironment, and when combined with QDs-based mo- lecular imaging, it can help to better investigate the invasive behaviors of HCC cells.
基金supported by grants from the Major Project Specialized for Infectious Diseases of the Chinese Health and Family Planning Commission[2014ZX10004002-004-002,2014ZX10004002-004-001]Young Talent Scholar Plan of Higher School in Hebei Province[BJ2017008]
文摘Objective Newly identified human rhinovirus C (HRV-C) and human bocavirus (HBoV) cannot propagate in vitro in traditional cell culture models; thus obtaining knowledge about these viruses and developing related vaccines are difficult. Therefore, it is necessary to develop a novel platform for the propagation of these types of viruses.Methods A platform for culturing human airway epithelia in a three-dimensional (3D) pattern using Matrigel as scaffold was developed. The features of 3D culture were identified by immunochemical staining and transmission electron microscopy. Nucleic acid levels of HRV-C and HBoV in 3D cells at designated time points were quantitated by real-time polymerase chain reaction {PCR). Levels of cytokines, whose secretion was induced by the viruses, were measured by ELISA.Results Properties of bronchial-like tissues, such as the expression of biomarkers CK5, ZO-2, and PCK, and the development of cilium-like protuberances indicative of the human respiration tract, were observed in 3D-cultured human airway epithelial (HAE) cultures, but not in monolayer-cultured cells. Nucleic acid levels of HRV-C and HBoV and levels of virus-induced cytokines were also measured using the 3D culture system.Conclusion Our data provide a preliminary indication that the 3D culture model of primary epithelia using a Matrigel scaffold in vitro can be used to propagate HRV-C and HBoV.
文摘In this work, patterned macropores with a diameter larger than 100 μm were introduced to pristine three-dimensional (3D) nanofibrous bacterial cellulose (BC) scaffolds by using the infrared laser micromachining technique in an attempt to create an in vitro model for the culture of breast cancer cells. The morphology, pore structure, and mechanical performance of the obtained patterned macroporous BC (PM-BC) scaffolds were characterized by scanning electron microscopy (SEM), mercury intrusion porosimeter, and mechanical testing. A human breast cancer cell (MDA-MB-231) line was cultured onto the PM-BC scaffolds to investigate the role of macropores in the control of cancer cell behavior. MTT assay, SEM, and hematoxylin and eosin (H&E) staining were employed to determine cell adhesion, growth, proliferation, and infiltration. The PM-BC scaffolds were found to be able to promote cellular adhesion and proliferation on the scaffolds, and further to allow for cell infiltration into the PM-BC scaffolds. The results demonstrated that BC scaffolds with laser-patterned macropores were promising for the in vitro 3D culture of breast cancer cells.
文摘The presence of endometrial tissue outside of the uterine cavity is named endometriosis and is the most common gynecologic disorder in women. Determining the inhibitory effect of a Deforolimus on angiogenesis in a three-dimensional (3-D) culture of human endometrial stromal cells (hEnCs) in vitro. The important mechanism in the pathogenesis of endometriosis is angiogenesis, and deforolimus has been shown to have anti-angiogenic activity. This was an in vitro study of human endometrial stromal cells in 3-D culture of fibrin matrix. Endometrial stromal cells isolated and placed in a 3-D fibrin matrix culture system for angiogenesis with VEGF and inhibit angiogenesis by deforolimus. Finally these cells analyzed by CD31 antibodies. After 3 weeks, in cells treated with VEGF, endothelial cell branching was observed and rudimentary capillary-like structures formed. In the presence of 5μM of deforolimus, angiogenesis was reduced. The deforolimus were shown to be effective in inhibiting the mechanisms of angiogenesis.
基金sponsored by the National Natural Science Foundation of China(No.52235007,YH)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004,YH)+3 种基金the NationalNatural Science Foundation of China(No.52305300,MJX)the Fellowship of China Postdoctoral Science Foundation(No.2022M722826,MJX)the National Natural Science Foundation of China(No.82203602,JW)the Zhejiang Provincial Natural Science Foundation of China(No.LQ22H160020,JW)。
文摘Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.
基金support from the National Natural Science Foundation of China (Grant No.42207199)Zhejiang Provincial Postdoctoral Science Foundation (Grant Nos.ZJ2022155 and ZJ2022156).
文摘Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
基金supported by the National Natural Science Foundation of China(Grant No.51974173)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QD122).
文摘The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.
基金Supported by the National Key R&D Program of China (No.2018YFD0901301)the Natural Science Foundation of Shandong Province (No.ZR2020MC189)+1 种基金the Fundamental Research Funds for Central Universities of China (No.201822018)the Pilot National Laboratory for Marine Science and Technology (Qingdao) (No.JCZX202024)。
文摘Crab cell line,especially continuous crab cell line,can provide us a useful tool for studies on the virology,immunology,and molecular biology of crabs.However,no continuous crab cell line has been available due to the lacking of suitable medium and the occurrence of mitosis-arrest.In this study,long-term in vitro culture conditions for both two-(2D)and three-dimensions(3D)were successfully developed for the circulating hemocytes of swimming crab Portunus trituberculatus,designated as PTH cells.In 2D culture,a novel crab basic medium in osmolarity of 990–1100 mOsm/kg was optimized for the first time,which is different from Leibovitz's L-15 medium in mainly the components of amino acids,containing double strengths of the contents of free amino acid mixture in the crab serum.Then an optimal crab growth medium was developed by supplementing 5%fetal bovine serum,50-g/L yeast extract powder,20-μg/L basic fibroblast growth factor and epidermal growth factor into the optimal crab basic medium,and found that it could support a long-term survival of PTH cells in a healthy monolayer up to 347 days and partially break through the mitosis-arrest of crab cells evidenced by the obvious increase of proliferating potential detected in the 10-d primarily cultured PTH cells.These 2D cultured PTH cells could be successfully sub-cultured for 11 times by physical flushing method and well cryopreserved in liquid nitrogen.In 3D culture,using the same crab growth medium,the PTH cell aggregates could be easily formed and healthily maintained on the surface of solidified Matrigel or in the ultra-low-attachment plate with a survival rate of 50%–60%on Day 103.This work largely improved the primary culture and subculture of crab cells and will facilitate the establishment of continuous crab cell line.
文摘Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).
基金Project supported by the Executive Agency for Higher Education Research Development and Innovation Funding of Romania(No.PN-III-P4-PCE-2021-0993)。
文摘This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.
基金supported by the Key Laboratory of Geological Survey and Evaluation of Ministry of Education (China University of Geosciences)(No. GLAB2020ZR13)
文摘The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.
基金supported by the National Natural Science Foundation of China(31272518)the program for the New Century Excellent Talents of Ministry of Education of China(NCET-09-0654)+1 种基金the Doctoral Fund of Ministry of Education of P.R.China(RFDP,20120204110030)the Fundamental Research Funds for the Central Universities,China(QN2011012)
文摘Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic cells maintain a close association throughout spermatogenesis and this association is necessary for normal spermatogenesis. In order to keep the relative integrity of the testicular tissues, and to detect the development in vitro, culture testicular tissues in a three- dimensional (3D) agarose matrix was examined. Testicular tissues isolated from 6.5 d postpartum (dpp) mouse were cultured on the top of the matrix for 26 d with a medium height up to 4/5 of the 3D agarose matrix. The results showed that in this 3D culture environment, each type of testicular cells kept the same structure, localization and function as in vivo and might be more biologically relevant to living organisms. After culture, germ cell marker VASA and meiosis markers DAZL and SCP3 showed typical positive analysed by immunofluorescence staining and RT-PCR. It demonstrated that this 3D culture system was able to maintain the number of germ cells and promote the meiosis initiation of male germ cells.
文摘To screen for additional treatment targets against tongue cancer, we evaluated the contributions of extracellular signal-related kinase(ERK), AKT and ezrin in cancer development. Immunohistochemical staining showed that ERK and ezrin expressions were significantly higher in invasive squamous cell carcinoma than in carcinoma in situ. To investigate the roles of ERK and ezrin in cancer development, we used the non-woven silica fibre sheet Cellbedwith a structure resembling the loose connective tissue morphology in a novel 3 D culture system. We confirmed that the 3 D system using CellbedTMaccurately mimicked cancer cell morphology in vivo. Furthermore, cell projections were much more apparent in 3 D-cultured tongue cancer cell lines than in 2 D cultures. Typically, under conventional 2 D culture conditions, F-actin and cortactin are colocalized in the form of puncta within cells.However, in the 3 D-cultured cells, colocalization was mainly observed at the cell margins, including the projections. Projections containing F-actin and cortactin colocalization were predicted to be invadopodia. Although suppressing ezrin expression with small interfering RNA transfection caused no marked changes in morphology, cell projection formation was decreased, and the tumour thickness in vertical sections after 3 D culture was markedly decreased after suppressing ERK activity because both the invasion ability and proliferation were inhibited. An association between cortactin activation as well as ERK activity and invadopodia formation was detected. Our novel 3 D culture systems using Cellbed? are simple and useful for in vitro studies before conducting animal experiments. ERK contributes to tongue cancer development by increasing both cancer cell proliferation and migration via cortactin activation.
文摘Damage in central nervous system plays an important role in biological life and causes severe paralysis of limbs and some organs. There are solutions to problems that can be a great revolution in the transplanted spinal cord and nerve injuries. Schwann cells (SCs) have important roles in development, myelination and regeneration in the peripheral nervous system. The applications of SCs in regenerative medicine are limited because of slow growth rate and difficulties in harvesting. Critical to the hypothesis is the experimental fact that human endometrial-derived stem cells (hEnSCs) as multipotent accessible source of cells are known as useful cell candidates in the field of nerve tissue engineering. We decided to use the three-dimensional culture of Schwann cells differentiated from endometrial stem cell in fibrin gel. In this study, we investigate the expression of differentiated Schwann cell markers by exposing of endometrial stem cells with induction media including FGF2/FSK/HRG/RA. Using immunocytochemistry, we show that differentiated cells express S100 and P75 markers. These results show that for the first time, human endometrial stem cells can be differentiated into Schwann cells in 2D and 3D culture. These novel differentiated cells in fibrin gel might open new opportunities for the management of cell survival and neurotrophic potential in tissue engineering approaches for nerve repair.