The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie...The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.展开更多
46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of und...46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of undisturbed solar wind, foreshock, magnetosheath. The preliminary results indicate the properties of the plasma turbulence in the magnetosheath are strongly controlled by IMF orientation with respect to the bow shock normal. The amplitude of the magnetic field magnitude and direction variations behind quasiparallel bow shock are larger than those behind quasi-perpendicular bow shock. Almost purely compressional waves are found in quasi-perpendicular magnetosheath.展开更多
The state of the physics of convective clouds and cloud seeding is discussed briefly. It is noted that at the present time there is a transition from the stage of investigation of “elementary” processes in the cloud...The state of the physics of convective clouds and cloud seeding is discussed briefly. It is noted that at the present time there is a transition from the stage of investigation of “elementary” processes in the clouds to the stage of studying the formation of macro- and microstructural characteristics of clouds as a whole, taking into account their system properties. The main directions of the development of cloud physics at the upcoming stage of its development are discussed. The paper points out that one of these areas is the determination of the structure-forming factors for the clouds and the study of their influence on their formation and evolution. It is noted that one of such factors is the interaction of clouds with their surrounding atmosphere, and the main method of studying its role in the processes of cloud formation is mathematical modeling. A three-dimensional nonstationary model of convective clouds is presented with a detailed account of the processes of thermohydrodynamics and microphysics, which is used for research. The results of modeling the influence of the wind field structure in the atmosphere on the formation and evolution of clouds are presented. It is shown that the dynamic characteristics of the atmosphere have a significant effect on the formation of macro- and microstructural characteristics of convective clouds: the more complex the structure of the wind field in the atmosphere (i.e., the more intense the interaction of the atmosphere and the cloud), the less powerful the clouds are formed.展开更多
A method of spectrum estimation based on the genetic simulated annealing(GSA)algorithm is proposed,which is applied to retrieve the three-dimensional wind field of typhoon Nangka observed by our research group.Compare...A method of spectrum estimation based on the genetic simulated annealing(GSA)algorithm is proposed,which is applied to retrieve the three-dimensional wind field of typhoon Nangka observed by our research group.Compared to the genetic algorithm(GA),the GSA algorithm not only extends the detection range and guarantees the accuracy of retrieval results but also demonstrates a faster retrieval speed.Experimental results indicate that both the GA and GSA algorithms can enhance the detection range by 35%more than the least squares method.However,the convergence speed of the GSA algorithm is 17 times faster than that of the GA,which is more beneficial for real-time data processing.展开更多
This paper investigates a technique of retrieving three-dimensional windfields from the dual-Doppler weather radar radial wind which is based on the Cartesian space usingvariational method. This technology provides a ...This paper investigates a technique of retrieving three-dimensional windfields from the dual-Doppler weather radar radial wind which is based on the Cartesian space usingvariational method. This technology provides a simultaneous resolution of three wind components andsatisfies both the minimal dual-equation system and the continuity equation. The main advantage ofthis method is that it can remove the potential drawback of an iterative solution of Cartesiandual-Doppler analysis techniques which is a major demerit when one retrieves the vertical velocityusing mass continuity equation with iterative method. The data pre-processing technology andinterpolation are also studied. This work developed a three-dimensional Cressman weighting functionto process the interpolation. In order to test the capability and advantage of this method, onenumerical experiment based on simulating dual-Doppler radar observations is designed. Firstly, wesynthesize the dual-Doppler radar radial velocity and reflectivity from the numerical model. Then,the three-dimensional wind components are retrieved from the radial velocity and reflectivity usingthis technique. The retrieved three-dimensional wind fields are found to be quite consisted withthose previously simulated wind fields. Mean difference, root-mean-square error, and relativedeviation are defined to test the precision of the method. These statistic errors reveal theaccuracy and the advantage of this method. The numerical experiment has definitely testified thatthis technique can be used to retrieve the three-dimensional wind fields from the radial velocityand reflectivity detected by the real dual-Doppler weather radar.展开更多
针对连续多跨输电线路在瞬态风场作用下的风偏问题,提出考虑气动阻尼效应的输电线路风偏动态分析方法。以500 k V三跨线路为对象建立精细化非线性动力学计算模型,用谐波叠加法构建整档线路各点脉动风速场并结合准定常假设模拟作用于输...针对连续多跨输电线路在瞬态风场作用下的风偏问题,提出考虑气动阻尼效应的输电线路风偏动态分析方法。以500 k V三跨线路为对象建立精细化非线性动力学计算模型,用谐波叠加法构建整档线路各点脉动风速场并结合准定常假设模拟作用于输电线路的时变风荷载。考察由输电线路自身运动引起的气动阻尼对动态风偏响应影响,讨论其对绝缘子串风偏角频谱影响。采用美国输电线路设计规范ASCE No.74的气动阻尼进行导线风偏计算,并与所提方法比较。结果表明,输电线路气动阻尼对风偏动态响应影响显著,两种考虑气动阻尼方法计算结果较接近。展开更多
基金supported by the Key R&D Program of Shandong Province, China (No. 2023ZLYS01)the National Natural Science Foundation of China (Nos. 91730304 and 41575026)+3 种基金the National Key Research and Development Plan Project (No. 2022 YFC3104200)the Major Innovation Special Project of Qilu University of Technology (Shandong Academy of Sciences) Science Education Industry Integration Pilot Project (No. 2023HYZX01)the ‘Taishan Scholars’ Construction Projectthe Special funds of Laoshan Laboratory
文摘The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.
基金Supported by NNSFC (No. 40325010)RFBR-NSFC (2005-2006)the China-Russia Joint Research Center on Space Weather,Chinese Academy of Sciences
文摘46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of undisturbed solar wind, foreshock, magnetosheath. The preliminary results indicate the properties of the plasma turbulence in the magnetosheath are strongly controlled by IMF orientation with respect to the bow shock normal. The amplitude of the magnetic field magnitude and direction variations behind quasiparallel bow shock are larger than those behind quasi-perpendicular bow shock. Almost purely compressional waves are found in quasi-perpendicular magnetosheath.
文摘The state of the physics of convective clouds and cloud seeding is discussed briefly. It is noted that at the present time there is a transition from the stage of investigation of “elementary” processes in the clouds to the stage of studying the formation of macro- and microstructural characteristics of clouds as a whole, taking into account their system properties. The main directions of the development of cloud physics at the upcoming stage of its development are discussed. The paper points out that one of these areas is the determination of the structure-forming factors for the clouds and the study of their influence on their formation and evolution. It is noted that one of such factors is the interaction of clouds with their surrounding atmosphere, and the main method of studying its role in the processes of cloud formation is mathematical modeling. A three-dimensional nonstationary model of convective clouds is presented with a detailed account of the processes of thermohydrodynamics and microphysics, which is used for research. The results of modeling the influence of the wind field structure in the atmosphere on the formation and evolution of clouds are presented. It is shown that the dynamic characteristics of the atmosphere have a significant effect on the formation of macro- and microstructural characteristics of convective clouds: the more complex the structure of the wind field in the atmosphere (i.e., the more intense the interaction of the atmosphere and the cloud), the less powerful the clouds are formed.
基金supported by the Pre-research Project of Civilian Space(No.D040103)the Joint Project of National Natural Science Foundation of China(No.U23A20379)。
文摘A method of spectrum estimation based on the genetic simulated annealing(GSA)algorithm is proposed,which is applied to retrieve the three-dimensional wind field of typhoon Nangka observed by our research group.Compared to the genetic algorithm(GA),the GSA algorithm not only extends the detection range and guarantees the accuracy of retrieval results but also demonstrates a faster retrieval speed.Experimental results indicate that both the GA and GSA algorithms can enhance the detection range by 35%more than the least squares method.However,the convergence speed of the GSA algorithm is 17 times faster than that of the GA,which is more beneficial for real-time data processing.
基金This work is supported by the National Key Basic Research and Development Project of China (2004CB418305), by the NationalNatural Science Foundation of China under Grant No. 40375006, and by the project of Ministry of Science and Technology ofChina (2002
文摘This paper investigates a technique of retrieving three-dimensional windfields from the dual-Doppler weather radar radial wind which is based on the Cartesian space usingvariational method. This technology provides a simultaneous resolution of three wind components andsatisfies both the minimal dual-equation system and the continuity equation. The main advantage ofthis method is that it can remove the potential drawback of an iterative solution of Cartesiandual-Doppler analysis techniques which is a major demerit when one retrieves the vertical velocityusing mass continuity equation with iterative method. The data pre-processing technology andinterpolation are also studied. This work developed a three-dimensional Cressman weighting functionto process the interpolation. In order to test the capability and advantage of this method, onenumerical experiment based on simulating dual-Doppler radar observations is designed. Firstly, wesynthesize the dual-Doppler radar radial velocity and reflectivity from the numerical model. Then,the three-dimensional wind components are retrieved from the radial velocity and reflectivity usingthis technique. The retrieved three-dimensional wind fields are found to be quite consisted withthose previously simulated wind fields. Mean difference, root-mean-square error, and relativedeviation are defined to test the precision of the method. These statistic errors reveal theaccuracy and the advantage of this method. The numerical experiment has definitely testified thatthis technique can be used to retrieve the three-dimensional wind fields from the radial velocityand reflectivity detected by the real dual-Doppler weather radar.
文摘针对连续多跨输电线路在瞬态风场作用下的风偏问题,提出考虑气动阻尼效应的输电线路风偏动态分析方法。以500 k V三跨线路为对象建立精细化非线性动力学计算模型,用谐波叠加法构建整档线路各点脉动风速场并结合准定常假设模拟作用于输电线路的时变风荷载。考察由输电线路自身运动引起的气动阻尼对动态风偏响应影响,讨论其对绝缘子串风偏角频谱影响。采用美国输电线路设计规范ASCE No.74的气动阻尼进行导线风偏计算,并与所提方法比较。结果表明,输电线路气动阻尼对风偏动态响应影响显著,两种考虑气动阻尼方法计算结果较接近。