期刊文献+
共找到16,309篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling 被引量:10
1
作者 Nipha Chaicharoenaudomrung Phongsakorn Kunhorm Parinya Noisa 《World Journal of Stem Cells》 SCIE 2019年第12期1065-1083,共19页
Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cel... Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed. 展开更多
关键词 three-dimensional cultureS CANCER Stem cells Disease MODELING In VITRO screening PLATFORM
下载PDF
In Vitro Invasive Pattern of Hepatocellular Carcinoma Cell Line HCCLM9 Based on Three-dimensional Cell Culture and Quantum Dots Molecular Imaging 被引量:7
2
作者 方敏 彭春伟 +2 位作者 刘少平 袁静萍 李雁 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2013年第4期520-524,共5页
Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. ... Summary: This study aimed to establish a new in vitro three-dimensional (3D) cell culture and use quantum dots (QDs) molecular imaging to examine the invasive behaviors of hepatocellular carcinoma (HCC) cells. Each well of the 24-well cell culture plate was cover-slipped. Matrigel diluted with se- rum-free DMEM was added and HCCLM9 cells were cultured on the Matrigel. The cell morphological and cell growth characteristics were observed by inverted microscopy and laser confocal microscopy at different culture time. Cell invasive features were monitored by QDs-based real-time molecular imaging techniques. The results showed that on this 3D cell culture platform, HCCLM9 cells exhibited typical multi-step invasive behaviors, including reversion of cell senescence, active focal proliferation and dominant clones invasion. During the process, cells under 3D cell culture showed biological behaviors of spatio-temporal characteristics. Cells first merged on the surface of matrix, then gradually infiltrated and migrated into deep part of matrix, presenting polygonal morphology with stretched protrusions, forming tubular, annular and even network structure, which suggested that HCC cells have the morpho- logical basis for vasculogenic mimicry. In addition, small cell clones with their edges well-circumscribed in early stage, progressed into a large irregular clone with ill-defined edge, while the other cells developed invadopodia. And QDs probing showed MT1-MMP was strongly expressed in the invadopodia. These findings indicate that a novel 3D cell culture platform has been successfully estab- lished, which can mimic the in vivo tumor microenvironment, and when combined with QDs-based mo- lecular imaging, it can help to better investigate the invasive behaviors of HCC cells. 展开更多
关键词 3D cell culture tumor microenvironment tumor invasion quantum dots
下载PDF
Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis 被引量:4
3
作者 Jeong Ah Kim Soohyun Hong Won Jong Rhee 《World Journal of Stem Cells》 SCIE 2019年第10期803-816,共14页
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discov... Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems.Recently,researchers have been actively developing and evaluating three-dimensional(3D)cell culture-based platforms using microfluidic technologies,such as organ-on-a-chip and organoid-on-a-chip platforms,and they have achieved promising breakthroughs in stem cell engineering.In this review,we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery.In a subsequent section,we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research.In addition,some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted. 展开更多
关键词 STEM cell Microfluidic TECHNOLOGY three-dimensional cell culture Highthroughput SCREENING
下载PDF
3D Collagen Gels:A Promising Platform for Dendritic Cell Culture in Biomaterials Research
4
作者 Kirubanandan Shanmugam 《Proceedings of Anticancer Research》 2024年第4期124-134,共11页
The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These syst... The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These systems can induce specific cell reactions,promote specific tissue functions,and serve as valuable tools for research in tissue engineering,regenerative medicine,and drug discovery.This paper discusses current developments in the field of three-dimensional cell culture and the potential applications of 3D type 1 collagen gels to enhance the growth and maturation of dendritic cells. 展开更多
关键词 three-dimensional cell culture Dendritic cells Type 1 collagen gels Bovine tendons and rat tails
下载PDF
The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury 被引量:2
5
作者 Dingyue Ju Chuanming Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1751-1758,共8页
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t... Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury. 展开更多
关键词 BIOMATERIALS embryonic stem cells induced pluripotent stem cells mesenchymal stem cells nerve regeneration spinal cord injury stem cell therapy stem cells three-dimensional bioprinting
下载PDF
Three-dimensional cell-based strategies for liver regeneration 被引量:1
6
作者 DAN GUO XI XIA JIAN YANG 《BIOCELL》 SCIE 2024年第7期1023-1036,共14页
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap... Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care. 展开更多
关键词 three-dimensional Liver regeneration ORGANOIDS Stem cells cell therapy
下载PDF
MACS-W:A modified optical clearing agent for imaging 3D cell cultures
7
作者 Xiang Zhong Chao Gao +6 位作者 Hui Li Yuening He Peng Fei Zaozao Chen Zhongze Gu Dan Zhu Tingting Yu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期24-34,共11页
Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible... Three-dimensional(3D)cell cultures have contributed to a variety of biological research fields by filling the gap between monolayers and animal models.The modern optical sectioning microscopic methods make it possible to probe the complexity of 3D cell cultures but are limited by the inherent opaqueness.While tissue optical clearing methods have emerged as powerful tools for investigating whole-mount tissues in 3D,they often have limitations,such as being too harsh for fragile 3D cell cultures,requiring complex handling protocols,or inducing tissue deformation with shrinkage or expansion.To address this issue,we proposed a modified optical clearing method for 3D cell cultures,called MACS-W,which is simple,highly efficient,and morphology-preserving.In our evaluation of MACS-W,we found that it exhibits excellent clearing capability in just 10 min,with minimal deformation,and helps drug evaluation on tumor spheroids.In summary,MACS-W is a fast,minimally-deformative and fluorescence compatible clearing method that has the potential to be widely used in the studies of 3D cell cultures. 展开更多
关键词 Tissue optical clearing 3D cell cultures IMAGING
下载PDF
Irradiation Response of Adipose-derived Stem Cells under Three-dimensional Culture Condition
8
作者 DU Ya Rong PAN Dong +5 位作者 CHEN Ya Xiong XUE Gang REN Zhen Xin LI Xiao Man ZHANG Shi Chuan HU Bu Rong 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第8期549-557,共9页
Objective Adipose tissue distributes widely in human body. The irradiation response of the adipose cells in vivo remains to be investigated. In this study we investigated irradiation response of adipose-derived stem c... Objective Adipose tissue distributes widely in human body. The irradiation response of the adipose cells in vivo remains to be investigated. In this study we investigated irradiation response of adipose-derived stem cells (ASCs) under three-dimensional culture condition. Methods ASCs were isolated and cultured in low attachment dishes to form three-dimensional (3D) spheres in vitro. The neuronal differentiation potential and stem-liked characteristics was monitored by using immunofluoresence staining and flow cytometry in monolayer and 3D culture. To investigate the irradiation sensitivity of 3D sphere culture, the fraction of colony survival and micronucleus were detected in monolayer and 3D culture. Soft agar assays were performed for measuring malignant transformation for the irradiated monolayer and 3D culture. Results The 3D cultured ASCs had higher differentiation potential and an higher stem-like cell percentage. The 3D cultures were more radioresistant after either high linear energy transfer (LET) carbon ion beam or low LET X-ray irradiation compared with the monolayer cell. The ASCs’ potential of cellular transformation was lower after irradiation by soft agar assay. Conclusion These findings suggest that adipose tissue cell are relatively genomic stable and resistant to genotoxic stress. 展开更多
关键词 Adipose-derived stem cells three-dimensional cell culture Irradiation response High-and low-LET irradiation
下载PDF
Three-dimensional cell culture models for investigating human viruses 被引量:5
9
作者 Bing He Guomin Chen Yi Zeng 《Virologica Sinica》 SCIE CAS CSCD 2016年第5期363-379,共17页
Three-dimensional(3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover,these models bridge the ga... Three-dimensional(3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover,these models bridge the gap between traditional two-dimensional(2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition,3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models. 展开更多
关键词 three-dimensional (3D) cell culture models scaffolds human viruses
原文传递
Isolation and Identification of Cancer Stem Cells from Human Osteosarcom by Serum-free Three-dimensional Culture Combined with Anticancer Drugs 被引量:7
10
作者 周松 李锋 +4 位作者 肖骏 熊伟 方忠 陈文坚 牛鹏彦 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第1期81-84,共4页
The cancer stem cells(CSCs)from human osteosarcoma by serum-free three-dimensional culture combined with anticancer drugs were isolated and identified.The primary cells derived from human osteosarcoma were digested by... The cancer stem cells(CSCs)from human osteosarcoma by serum-free three-dimensional culture combined with anticancer drugs were isolated and identified.The primary cells derived from human osteosarcoma were digested by trypsin to prepare a single-cell suspension,and mixed homogeneously into 1.2% alginate gel.Single-cell alginate gel was cultured with serum-free DMEM/F12 medium.Epirubicin(0.8μg/mL)was added to the medium to enrich CSCs.After cultured conventionally for 7 to 10 days,most of cells suspended in ... 展开更多
关键词 three-dimensional culture serum-free culture EPIRUBICIN OSTEOSARCOMA cancer stem cells
下载PDF
Chinese medicinal compound delisheng has satisfactory anti-tumor activity,and is associated with up-regulation of endostatin in human hepatocellular carcinoma cell line HepG2 in three-dimensional culture 被引量:5
11
作者 Jie Cui Ke-Jun Nan Tao Tian Ya-Huan Guo Na Zhao Lin Wang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第41期5432-5439,共8页
AIM: TO investigate the multicellular resistance of human hepatocellular carcinoma HepG2 cells in three-dimensional culture to delisheng, 5-fluorouracil and adriamycin, and the possible molecular mechanisms of delish... AIM: TO investigate the multicellular resistance of human hepatocellular carcinoma HepG2 cells in three-dimensional culture to delisheng, 5-fluorouracil and adriamycin, and the possible molecular mechanisms of delisheng. METHODS: Human hepatocellular carcinoma HepG2 cells were cultured with a liquid overlay technique. After the formation of multicellular spheroids, morphology was analyzed by phase contrast microscopy, scanning electron microscopy and transmission electron microscopy. Sensitivity of HepG2 cells to delisheng, 5-fluorouracil and adriamycin was investigated by Ml-I- assay in multicelluar spheroids and monolayers. Vascular endothelial growth factor (VEGF) and endostatin expression were analyzed in multicellular spheroids treated with delisheng, 5-fluorouracil, adriamycin and negative control PBS, with immunohistochemical staining. RESULTS: Multicellular spheroids exhibited structural characteristics somewhat different to those in monolayers. The cells in three-dimensional cell culture turned out to be less sensitive to delisheng, 5-fluorouracil and adriamycin than the cells cultured in monolayer. This showed that delisheng had a satisfactory cells inhibition ratio compared to 5-fluorouracil and adriamycin. Immunohistochemical staining showed that VEGF and endostatin expression was positive during growth as multicellular spheroids, and endostatin expression in spheroids with treatment of delisheng was higher than that with 5-fluorouracil, adriamycin and PBS (139.35 ± 7.83, 159.23 ± 10.34, 162.83 ± 3.47 and 148.48 ± 11.06, P 〈 0.05).CONCLUSION: Chinese medicine compound delisheng has satisfactory anti-tumor activity in HepG2 cells in three-dimensional culture, and the effects are associated with up-regulation of endostatin. 展开更多
关键词 Delisheng GINSENG three-dimensional culture Multicellular resistance ENDOSTATIN
下载PDF
Simplified three-dimensional culture system for long-term expansion of embryonic stem cells 被引量:2
12
作者 Christina McKee Mick Perez-Cruet +1 位作者 Ferman Chavez G Rasul Chaudhry 《World Journal of Stem Cells》 SCIE CAS 2015年第7期1064-1077,共14页
AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS: Mouse embryonic stem cells(ESCs) labeled with enhanced yellow ... AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS: Mouse embryonic stem cells(ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional(3-D) self-assembling scaffolds and compared with traditional two-dimentional(2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate(PEG-4-Acr) and thiolfunctionalized dextran(Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoB lue(PB) assays. Genetic expression of pluripotency markers(Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D cultureconditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining(Oct4 and Nanog) and western blot analysis(Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers. RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH(1:1 v/v) to a final concentration of 5%(w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels(P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury(mesoderm), NCAM(ectoderm), and GATA4(endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively. CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation. 展开更多
关键词 three-dimensional culture PLURIPOTENCY EMBRYONIC s
下载PDF
A Novel <i>in Vitro</i>Three-Dimensional Macroporous Scaffolds from Bacterial Cellulose for Culture of Breast Cancer Cells 被引量:1
13
作者 Guangyao Xiong Honglin Luo +3 位作者 Feng Gu Jing Zhang Da Hu Yizao Wan 《Journal of Biomaterials and Nanobiotechnology》 2013年第4期316-326,共11页
In this work, patterned macropores with a diameter larger than 100 μm were introduced to pristine three-dimensional (3D) nanofibrous bacterial cellulose (BC) scaffolds by using the infrared laser micromachining techn... In this work, patterned macropores with a diameter larger than 100 μm were introduced to pristine three-dimensional (3D) nanofibrous bacterial cellulose (BC) scaffolds by using the infrared laser micromachining technique in an attempt to create an in vitro model for the culture of breast cancer cells. The morphology, pore structure, and mechanical performance of the obtained patterned macroporous BC (PM-BC) scaffolds were characterized by scanning electron microscopy (SEM), mercury intrusion porosimeter, and mechanical testing. A human breast cancer cell (MDA-MB-231) line was cultured onto the PM-BC scaffolds to investigate the role of macropores in the control of cancer cell behavior. MTT assay, SEM, and hematoxylin and eosin (H&E) staining were employed to determine cell adhesion, growth, proliferation, and infiltration. The PM-BC scaffolds were found to be able to promote cellular adhesion and proliferation on the scaffolds, and further to allow for cell infiltration into the PM-BC scaffolds. The results demonstrated that BC scaffolds with laser-patterned macropores were promising for the in vitro 3D culture of breast cancer cells. 展开更多
关键词 3D culture SCAFFOLD Bacterial cellulose Cancer cell MACROPORE
下载PDF
Optimization of Three-Dimensional Culture Conditions of HepG2 Cells with Response Surface Methodology Based on the VitroGel System
14
作者 WANG Jing Bo QIN Wen +7 位作者 YANG Zhuo SHEN Shi MA Yan WANG Li Yuan ZHUO Qin GONG Zhao Long HUO Jun Sheng CHEN Chen 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2022年第8期688-698,共11页
Objective This study optimizes three-dimensional(3D) culture conditions of HepG2 using response surface methodology(RSM) based on the VitroGel system to facilitate the cell model in vitro for liver tissues.Method HepG... Objective This study optimizes three-dimensional(3D) culture conditions of HepG2 using response surface methodology(RSM) based on the VitroGel system to facilitate the cell model in vitro for liver tissues.Method HepG2 cell was 3D cultured on the VitroGel system.Cell viability was detected using Cell Counting Kit-8(CCK-8) assay of HepG2 lived cell numbers.The proliferation of HepG2 cell and clustering performance was measured via fluorescence staining test.Albumin concentration in the culture medium supernatant as an index of HepG2 cell biological function was measured with ELISA kit.Independent factor tests were conducted with three key factors:inoculated cell concentration,cultured time,and dilution degree of the hydrogel.The preliminary results of independent factor tests were used to determine the levels of factors for RSM.Result The selected optimal culture conditions are as follows:concentration of inoculated cells was4.44 × 10^(5)/mL,culture time was 4.86 days,and hydrogel dilution degree was 1:2.23.The result shows that under optimal conditions,the predicted optical density(OD) value of cell viability was 3.10 and measured 2.978 with a relative error of 3.94%.Conclusion This study serves as a reference for the 3D HepG2 culture and constructs liver tissues in vitro.Additionally,it provides the foundation for repeated dose high-throughput toxicity studies and other scientific research work. 展开更多
关键词 Response surface methodology The three-dimensional culture HYDROGEL
下载PDF
Inhibition of mammalian target of rapamycin induces phenotypic reversion in three-dimensional cultures of malignant breast epithelial cells
15
作者 Ross Booth Soonjo Kwon Eric Monson 《Journal of Biomedical Science and Engineering》 2010年第5期476-483,共8页
Inhibition of mammalian target of rapamycin (m- TOR) is a potential method for cancer treatment. Effects of rapamycin (RAP) on the reversion of malignant breast epithelial cells were investigated on three-dimensional ... Inhibition of mammalian target of rapamycin (m- TOR) is a potential method for cancer treatment. Effects of rapamycin (RAP) on the reversion of malignant breast epithelial cells were investigated on three-dimensional (3D) basement membrane extract (BME) cultures. Through continuous exposure to 20 nM of RAP, cell colony size was significantly reduced in 3D BME cultures of malignant breast epithelial cells, while normal cell colony size appeared unaffected. In unfixed 3D BME cultures of normal and RAP-treated malignant breast epithelial cells, the presence of luminal cell death was confirmed by ethidium bromide and propidium iodide labeling. Increased structural organization was observed by im- munofluorescence staining of F-actin and β-catenin in RAP-treated malignant breast epithelial cells. In monolayer cultures of normal and malignant breast epithelial cells, continuous exposure to 20 nM of RAP increased caspase 3/7 activity and decreased proliferation. Reverse transcriptase polymerase ch- ain reaction (RT-PCR) array analysis indicated a fold increase in the expression of a number of proteins related to polarity, cell-cell adhesion, and cell-matrix adhesion in the presence of RAP. Our data showed that phenotypic reversion of malignancy can be ach- ieved through RAP exposure on 3D BME cultures. This 3D BME culture system will provide correct microenvironments for observing the effects of other mTOR inhibitors on phenotypic reversion of malignant breast epithelial cells. 展开更多
关键词 RAPAMYCIN three-dimensional culture BREAST Cancer REVERSION BASEMENT Membrane Extract mTOR Inhibitors
下载PDF
Effect of deforolimus and VEGF on angiogenesis in endometrial stromal cells following three-dimensional culture
16
作者 Jafar Ai Somayeh Ebrahimi +2 位作者 Armin Ai Roya Karimi Naghmeh Bahrami 《Stem Cell Discovery》 2013年第1期7-12,共6页
The presence of endometrial tissue outside of the uterine cavity is named endometriosis and is the most common gynecologic disorder in women. Determining the inhibitory effect of a Deforolimus on angiogenesis in a thr... The presence of endometrial tissue outside of the uterine cavity is named endometriosis and is the most common gynecologic disorder in women. Determining the inhibitory effect of a Deforolimus on angiogenesis in a three-dimensional (3-D) culture of human endometrial stromal cells (hEnCs) in vitro. The important mechanism in the pathogenesis of endometriosis is angiogenesis, and deforolimus has been shown to have anti-angiogenic activity. This was an in vitro study of human endometrial stromal cells in 3-D culture of fibrin matrix. Endometrial stromal cells isolated and placed in a 3-D fibrin matrix culture system for angiogenesis with VEGF and inhibit angiogenesis by deforolimus. Finally these cells analyzed by CD31 antibodies. After 3 weeks, in cells treated with VEGF, endothelial cell branching was observed and rudimentary capillary-like structures formed. In the presence of 5μM of deforolimus, angiogenesis was reduced. The deforolimus were shown to be effective in inhibiting the mechanisms of angiogenesis. 展开更多
关键词 ENDOMETRIAL STROMAL cells ENDOMETRIUM 3-D culture Deforolimus VEGF
下载PDF
Reviews on Post-earthquake Reconstruction of Qiang Culture: Three-dimensional Pattern
17
作者 许虹 《Journal of Landscape Research》 2011年第9期11-13,18,共4页
Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affe... Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development. 展开更多
关键词 Qiang culture POST-EARTHQUAKE RECONSTRUCTION three-dimensional PATTERN
下载PDF
Culture and identification of neonatal rat brain-derived neural stem cells
18
作者 Qing-Zhong Zhou Xiao-Lan Feng +4 位作者 Xu-Feng Jia Nurul Huda Binti Mohd Nor Mohd Hezery Bin Harun Da-Xiong Feng Wan Aliaa Wan Sulaiman 《World Journal of Stem Cells》 SCIE 2023年第6期607-615,共9页
BACKGROUND Timing of passaging,passage number,passaging approaches and methods for cell identification are critical factors influencing the quality of neural stem cells(NSCs)culture.How to effectively culture and iden... BACKGROUND Timing of passaging,passage number,passaging approaches and methods for cell identification are critical factors influencing the quality of neural stem cells(NSCs)culture.How to effectively culture and identify NSCs is a continuous interest in NSCs study while these factors are comprehensively considered.AIM To establish a simplified and efficient method for culture and identification of neonatal rat brain-derived NSCs.METHODS First,curved tip operating scissors were used to dissect brain tissues from new born rats(2 to 3 d)and the brain tissues were cut into approximately 1 mm^(3)sections.Filter the single cell suspension through a nylon mesh(200-mesh)and culture the sections in suspensions.Passaging was conducted with TrypLTM Express combined with mechanical tapping and pipetting techniques.Second,identify the 5th generation of passaged NSCs as well as the revived NSCs from cryopreservation.BrdU incorporation method was used to detect self-renew and proliferation capabilities of cells.Different NSCs specific antibodies(anti-nestin,NF200,NSE and GFAP antibodies)were used to identify NSCs specific surface markers and muti-differentiation capabilities by immunofluorescence staining.RESULTS Brain derived cells from newborn rats(2 to 3 d)proliferate and aggregate into spherical-shaped clusters with sustained continuous and stable passaging.When BrdU was incorporated into the 5th generation of passaged cells,positive BrdU cells and nestin cells were observed by immunofluorescence staining.After induction of dissociation using 5%fetal bovine serum,positive NF200,NSE and GFAP cells were observed by immunofluorescence staining.CONCLUSION This is a simplified and efficient method for neonatal rat brain-derived neural stem cell culture and identification. 展开更多
关键词 Neonatal rats Brain-derived neural stem cells culture IDENTIFICATION
下载PDF
An Innovative Design of Incubator Structure for Cell Culture
19
作者 Shanshan HE Zhongwei CHEN +2 位作者 Ruonan HE Shiyi WU Qihuang LIN 《Medicinal Plant》 CAS 2023年第3期105-107,共3页
In view of the problems of the traditional cell incubator,such as the small range of cell culture types,the inability to adjust the internal space of the incubator according to needs,and the inconvenient sampling,this... In view of the problems of the traditional cell incubator,such as the small range of cell culture types,the inability to adjust the internal space of the incubator according to needs,and the inconvenient sampling,this study innovatively designed a cell incubator structure.It proposed a new design concept that can solve the above-mentioned shortcomings.The cell incubator after the new structural modification can adjust the internal space structure of cell culture by setting the bolt-fixed connection between the fixed plate and the vessel divider.It realizes the cultivation of various cells through refrigeration modules and heating modules.Through setting a sampling hole in the glass inner door,it is favorable for operators to take samples,making cell culture more convenient and efficient. 展开更多
关键词 cell incubator Innovative design cell culture
下载PDF
Repetitive administration of cultured human CD34+cells improve adenine-induced kidney injury in mice
20
作者 Takayasu Ohtake Shoichi Itaba +9 位作者 Amankeldi A Salybekov Yin Sheng Tsutomu Sato Mitsuru Yanai Makoto Imagawa Shigeo Fujii Hiroki Kumagai Masamitsu Harata Takayuki Asahara Shuzo Kobayashi 《World Journal of Stem Cells》 SCIE 2023年第4期268-280,共13页
BACKGROUND There is no established treatment to impede the progression or restore kidney function in human chronic kidney disease(CKD).AIM To examine the efficacy of cultured human CD34+cells with enhanced proliferati... BACKGROUND There is no established treatment to impede the progression or restore kidney function in human chronic kidney disease(CKD).AIM To examine the efficacy of cultured human CD34+cells with enhanced proliferating potential in kidney injury in mice.METHODS Human umbilical cord blood(UCB)-derived CD34+cells were incubated for one week in vasculogenic conditioning medium.Vasculogenic culture significantly increased the number of CD34+cells and their ability to form endothelial progenitor cell colony-forming units.Adenineinduced tubulointerstitial injury of the kidney was induced in immunodeficient non-obese diabetic/severe combined immunodeficiency mice,and cultured human UCB-CD34+cells were administered at a dose of 1×106/mouse on days 7,14,and 21 after the start of adenine diet.RESULTS Repetitive administration of cultured UCB-CD34+cells significantly improved the time-course of kidney dysfunction in the cell therapy group compared with that in the control group.Both interstitial fibrosis and tubular damage were significantly reduced in the cell therapy group compared with those in the control group(P<0.01).Microvasculature integrity was significantly preserved(P<0.01)and macrophage infiltration into kidney tissue was dramatically decreased in the cell therapy group compared with those in the control group(P<0.001).CONCLUSION Early intervention using human cultured CD34+cells significantly improved the progression of tubulointerstitial kidney injury.Repetitive administration of cultured human UCB-CD34+cells significantly improved tubulointerstitial damage in adenine-induced kidney injury in mice via vasculoprotective and anti-inflammatory effects. 展开更多
关键词 Chronic kidney disease CD34+cell ADENINE Tubulointerstitial injury Quality and quantity control culture Umbilical cord blood
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部