The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, ma...The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, many islands, moveable boundary, and submerged dyke, therefore, σ 3-D numerical model oil an unstructured triangular grid has been degeloped. The σ coordinate transforination, the moveable boundary and submerged dyke treatment techniques were employed in the model so it is suitable for the tidal simulations in the Oujing Estuary with submerged dyke and moveable boundary problems. The model is evaluated with the in situ data, and the results show that the calculated water elevations at 19 stations and currents at 19 profiler stations are in good agreement with measured data both in magnitude and phase. This numerical model is applied to the 3-D tidal circulation simulations of experiments in stopping flow transport through the South Branch of the Oujiang Estuary, and the feasibility to cutoff the flow in the South Branch of the Oujiang Estuary is demonstrated by numerical simulation experiments. The developed numerical model simulated the 3-D tidal current circulations in complicated coastal and estuarine waters very well.展开更多
On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian res...On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.展开更多
The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divid...The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divided into two parts:the vertically-intopated equations (external mode) and the vertical structure equations(internal mace). The first set of equations being the propagation of the tidal weves and the ADI numerical scheme has ben chosen to solve them. Conerning the vertical structure equations, they are solved by means of leapfrog stepping procedure.The main features of the tide and associated tidal current in the Bohai Sea are examined with this 3-D model.To have a good reproduction of vertical structure, the column is divided into 10 layers and the M2 tidal current is computed in detail. The simulation reveal the spetial structure and some important characteristics of the tidal current of the Bohai Sea. The application of the 3-D madel to forecasting of the tidal current in the Bobal Sea has been Performed as an illustration.展开更多
By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical so...By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.展开更多
The persistent current in three-dimensional (P × N2) nanorings as a function of the unit cell number (P), the channel number (M =N2), surface disorder (ζ), and temperature (T) is theoretically investig...The persistent current in three-dimensional (P × N2) nanorings as a function of the unit cell number (P), the channel number (M =N2), surface disorder (ζ), and temperature (T) is theoretically investigated in terms of rotational symmetry. On the whole, the typical current increases linearly with √M but decreases exponentially with P, while wide fluctuations exist therein. In the presence of surface disorder, the persistent current decreases with ζ in the regime of weak disorder but increases in the regime of strong disorder. In addition, it is found that the persistent current in perfect rings decreases exponentially with temperature even at T 〈 T*, while in most disorder rings, the typical current decreases slightly with temperature at T 〈 T*.展开更多
智能电能表现场编程须满足主回路电压达到78%以上,因此在主回路无电压时,无法实现电能表的现场编程或拆旧表计时读取表底度。对此,部分技术人员会在现场其余回路搭接电压,启动电能表完成编程,此种情况下极易造成人身或设备的安全事故。...智能电能表现场编程须满足主回路电压达到78%以上,因此在主回路无电压时,无法实现电能表的现场编程或拆旧表计时读取表底度。对此,部分技术人员会在现场其余回路搭接电压,启动电能表完成编程,此种情况下极易造成人身或设备的安全事故。为此,研制一款便携式复电装置能够输出50、100、220 V 3个档位的交流电压,具备过流、过压安全保护功能,提升现场作业安全和工作效率。展开更多
基金The Natural Science Foundation of Tianjin, China under contract No.08JCZDZT00200
文摘The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, many islands, moveable boundary, and submerged dyke, therefore, σ 3-D numerical model oil an unstructured triangular grid has been degeloped. The σ coordinate transforination, the moveable boundary and submerged dyke treatment techniques were employed in the model so it is suitable for the tidal simulations in the Oujing Estuary with submerged dyke and moveable boundary problems. The model is evaluated with the in situ data, and the results show that the calculated water elevations at 19 stations and currents at 19 profiler stations are in good agreement with measured data both in magnitude and phase. This numerical model is applied to the 3-D tidal circulation simulations of experiments in stopping flow transport through the South Branch of the Oujiang Estuary, and the feasibility to cutoff the flow in the South Branch of the Oujiang Estuary is demonstrated by numerical simulation experiments. The developed numerical model simulated the 3-D tidal current circulations in complicated coastal and estuarine waters very well.
基金Project supported by the National Natural Science Foundation of China
文摘On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.
文摘The model equations with tbree-dimensional, time-dependent, nonlinear Navier-Stokes equations are transformed by sigma-transformation.On the basis of the process splitting technique, the fluid flow problems are divided into two parts:the vertically-intopated equations (external mode) and the vertical structure equations(internal mace). The first set of equations being the propagation of the tidal weves and the ADI numerical scheme has ben chosen to solve them. Conerning the vertical structure equations, they are solved by means of leapfrog stepping procedure.The main features of the tide and associated tidal current in the Bohai Sea are examined with this 3-D model.To have a good reproduction of vertical structure, the column is divided into 10 layers and the M2 tidal current is computed in detail. The simulation reveal the spetial structure and some important characteristics of the tidal current of the Bohai Sea. The application of the 3-D madel to forecasting of the tidal current in the Bobal Sea has been Performed as an illustration.
基金financially supported by the the National Natural Science Foundation of China(Grant No.51709054)the Public Science and Technology Research Funds Projects of Ocean(Grant Nos.201405025 and 201505019)
文摘By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.
基金supported by the National Natural Science Foundation of China(Grant No i0674113)Program for New Century Excellent Talents in University of China(Grant No NCET-06-0707)+1 种基金Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No 200726)partially by Scientific Research Fund of Hunan Provincial Education Department of China (Grant No 06A071)
文摘The persistent current in three-dimensional (P × N2) nanorings as a function of the unit cell number (P), the channel number (M =N2), surface disorder (ζ), and temperature (T) is theoretically investigated in terms of rotational symmetry. On the whole, the typical current increases linearly with √M but decreases exponentially with P, while wide fluctuations exist therein. In the presence of surface disorder, the persistent current decreases with ζ in the regime of weak disorder but increases in the regime of strong disorder. In addition, it is found that the persistent current in perfect rings decreases exponentially with temperature even at T 〈 T*, while in most disorder rings, the typical current decreases slightly with temperature at T 〈 T*.
文摘智能电能表现场编程须满足主回路电压达到78%以上,因此在主回路无电压时,无法实现电能表的现场编程或拆旧表计时读取表底度。对此,部分技术人员会在现场其余回路搭接电压,启动电能表完成编程,此种情况下极易造成人身或设备的安全事故。为此,研制一款便携式复电装置能够输出50、100、220 V 3个档位的交流电压,具备过流、过压安全保护功能,提升现场作业安全和工作效率。