In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansio...In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.展开更多
In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular ...In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).展开更多
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable ...A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.展开更多
A complete process of grid generation for complex practical aircraft is described with a twin tail fighter as an example. Euler equations are discretized in the generated multiblock grid by a finite volume method and...A complete process of grid generation for complex practical aircraft is described with a twin tail fighter as an example. Euler equations are discretized in the generated multiblock grid by a finite volume method and solved by a three stage explicit time stepping scheme in each block with some extra treatments of interface at each step. The predicted aerodynamic coefficients and vortical flow field are reasonable.展开更多
The paper studies the well-posedness and optimal error estimates of spectral finite element approximations for the boundary value problems of semi-linear elliptic SPDEs driven by white or colored Gaussian noises.The n...The paper studies the well-posedness and optimal error estimates of spectral finite element approximations for the boundary value problems of semi-linear elliptic SPDEs driven by white or colored Gaussian noises.The noise term is approximated through the spectral projection of the covariance operator,which is not required to be commutative with the Laplacian operator.Through the convergence analysis of SPDEs with the noise terms replaced by the projected noises,the well-posedness of the SPDE is established under certain covariance operator-dependent conditions.These SPDEs with projected noises are then numerically approximated with the finite element method.A general error estimate framework is established for the finite element approximations.Based on this framework,optimal error estimates of finite element approximations for elliptic SPDEs driven by power-law noises are obtained.It is shown that with the proposed approach,convergence order of white noise driven SPDEs is improved by half for one-dimensional problems,and by an infinitesimal factor for higher-dimensional problems.展开更多
We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms.The meth...We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms.The method will be based on a geometric grid network area and included among the most stable differencing scheme in which the nine-point spatial finite differences are implemented,thus arriving at a compact formulation.In general,a third order of accuracy has been achieved and a fourth-order truncation error in the solution values will follow as a particular case.The efficiency of using geometric mesh ratio parameter has been shown with the help of illustrations.The convergence of the scheme has been established using the matrix analysis,and irreducibility is proved with the help of strongly connected characteristics of the iteration matrix.The difference scheme has been applied to test convection diffusion equation,steady state Burger’s equation,ocean model and a semi-linear elliptic equation.The computational results confirm the theoretical order and accuracy of the method.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90511009 and 40305006 Cprrespondence author,
文摘In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
文摘In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.
基金This work is supported by the National Fujian Province Nature Science Research Funds
文摘In this paper, we consider a singular perturbation elliptic-parabolic partial differential equation for periodic boundary value problem, and construct a difference scheme. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, we prove that the scheme constructed by this paper converges uniformly to the solution of its original problem with O(r+h2).
文摘A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.
文摘A complete process of grid generation for complex practical aircraft is described with a twin tail fighter as an example. Euler equations are discretized in the generated multiblock grid by a finite volume method and solved by a three stage explicit time stepping scheme in each block with some extra treatments of interface at each step. The predicted aerodynamic coefficients and vortical flow field are reasonable.
基金partially supported by U.S.National Science Foundation,No.DMS1620150U.S.Army ARDEC,No.W911SR-14-2-0001+2 种基金partially supported by National Natural Science Foundation of China,No.91130003,No.11021101,and No.11290142partially supported by Hong Kong RGC General Research Fund,No.16307319the UGC–Research Infrastructure Grant,No.IRS20SC39。
文摘The paper studies the well-posedness and optimal error estimates of spectral finite element approximations for the boundary value problems of semi-linear elliptic SPDEs driven by white or colored Gaussian noises.The noise term is approximated through the spectral projection of the covariance operator,which is not required to be commutative with the Laplacian operator.Through the convergence analysis of SPDEs with the noise terms replaced by the projected noises,the well-posedness of the SPDE is established under certain covariance operator-dependent conditions.These SPDEs with projected noises are then numerically approximated with the finite element method.A general error estimate framework is established for the finite element approximations.Based on this framework,optimal error estimates of finite element approximations for elliptic SPDEs driven by power-law noises are obtained.It is shown that with the proposed approach,convergence order of white noise driven SPDEs is improved by half for one-dimensional problems,and by an infinitesimal factor for higher-dimensional problems.
文摘We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms.The method will be based on a geometric grid network area and included among the most stable differencing scheme in which the nine-point spatial finite differences are implemented,thus arriving at a compact formulation.In general,a third order of accuracy has been achieved and a fourth-order truncation error in the solution values will follow as a particular case.The efficiency of using geometric mesh ratio parameter has been shown with the help of illustrations.The convergence of the scheme has been established using the matrix analysis,and irreducibility is proved with the help of strongly connected characteristics of the iteration matrix.The difference scheme has been applied to test convection diffusion equation,steady state Burger’s equation,ocean model and a semi-linear elliptic equation.The computational results confirm the theoretical order and accuracy of the method.