The purpose of this paper is to discuss the integration of the elements of civic and political education into the engineering geology course to improve students’ideological and moral qualities.It is proposed that by ...The purpose of this paper is to discuss the integration of the elements of civic and political education into the engineering geology course to improve students’ideological and moral qualities.It is proposed that by integrating elements of civic and political education,students are guided to form a positive attitude toward engineering practice as well as correct values and ethics.With regard to the teaching design and implementation of the course,the implementation paths of teacher team building,careful teaching design,innovative teaching methods,and the integration of civic and politics in practical teaching are proposed to summarize the significance of integrating the elements of civic and political education in the construction of the engineering geology course.It is pointed out that this integration not only improves the quality of the course,but also provides a reference for the civic and political education of other similar professional courses.This integration not only focuses on the teaching of professional knowledge,but also pays more attention to the cultivation of students’ideology and morality,which provides a model and guidance for shaping new talents with all-round development.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 ea...At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 earthquake,which has very strong seismic activity.Therefore,carrying out engineering construction in the Sichuan-Tibet transport corridor is a huge challenge for geological technological personnel.To determining the spatial geometric distribution,activity of active faults and geological safety risk in the Sichuan-Tibet transport corridor.Based on remote sensing images,ground surveys,and chronological tests,as well as the deep geophysical and current GPS data,we investigated the geometry,segmentation,and paleoearthquake history of five major active fault zones in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,namely the Xianshuihe,Litang,Batang,Jiali-Chayu and Lulang-Yigong.The five major fault zones are all Holocene active faults,which contain strike-slip components as well as thrust or normal fault components,and contain multiple branch faults.The Selaha-Kangding segment of the Xianshuihe fault zone,the Maoyaba and Litang segment of the Litang fault zone,the middle segment(Yigong-Tongmai-Bomi)of Jiali-Chayu fault zone and Lulang-Yigong fault zone have the risk of experiencing strong earthquakes in the future,with a high possibility of the occurrence of MS≥7.0 earthquakes.The Jinsha River and the Palong-Zangbu River,which is a high-risk area for geological hazard chain risk in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor.Construction and safe operation Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,need strengthen analysis the current crustal deformation,stress distribution and fault activity patterns,clarify active faults relationship with large earthquakes,and determine the potential maximum magnitude,epicenters,and risk range.This study provides basic data for understanding the activity,seismicity,and tectonic deformation patterns of the regional faults in the Sichuan-Tibet transport corridor.展开更多
Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by effor...Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by efforts to achieve a low-carbon economy,deep seabed mining will play an important role in addressing energy-and resource-related problems in the future.However,deep seabed mining remains in the exploratory stage,with many challenges presented by the high-pressure,low-temperature,and complex geologic and hydrodynamic environments in deep-sea mining areas,which are inaccessible to human activities.Thus,considerable efforts are required to ensure sustainable,economic,reliable,and safe deep seabed mining.This study reviews the latest advances in marine engineering geology and the environment related to deep-sea min-ing activities,presents a bibliometric analysis of the development of ocean mineral resources since the 1950s,summarizes the development,theory,and issues related to techniques for the three stages of ocean mining(i.e.,exploration,extraction,and closure),and discusses the engineering geology environment,geological disasters,in-situ monitoring techniques,envi-ronmental protection requirements,and environmental effects in detail.Finally,this paper gives some key conclusions and future perspectives to provide insights for subsequent studies and commercial mining operations.展开更多
The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there ar...The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there are no perfect data structures that can describe all spatial entities. Every data structure has its own advantages and disadvantages. It is difficult to design a single data structure to meet different needs. The important subject in the3-D data models is developing a data model that has integrated vector and raster data structures. A special 3-D spatial data model based on distributing features of spatial entities should be designed. We took the geological exploration engineering as the research background and designed an integrated data model whose data structures integrats vector and raster data byadopting object-oriented technique. Research achievements are presented in this paper.展开更多
The basic features and acoustic-physical properties of calcareous seafloor soils in the tropic sea area are obviously different from those of sediments mainly composed of terrigenous materials in the South China Sea. ...The basic features and acoustic-physical properties of calcareous seafloor soils in the tropic sea area are obviously different from those of sediments mainly composed of terrigenous materials in the South China Sea. Generally calcareous soils, composed of carbonate particles of marine organism remains. have the characteristics of high water content, high porosity, low wet density, high sound velocity and greatly varied comprehensive strength. Recognizing the differences between calcareous soils and terrigenous sediments and engineering geologic significance of calcareous soils is crucial for seafloor geologic research and geotechnical survey for pile-jacket platform foundation design.展开更多
Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coa...Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of展开更多
This paper provides an overview of the engineering geology of limestone. Limestone is of rather wide occurrence in Malaysia. It is interesting in view of the unique landforms and karstic features that are encountered ...This paper provides an overview of the engineering geology of limestone. Limestone is of rather wide occurrence in Malaysia. It is interesting in view of the unique landforms and karstic features that are encountered in limestone terrains, e.g. steep, subvertical limestone cliffs rising abruptly and majestically above the ground surface and highly variable and pinnacled subterranean limestone bedrock. The karstic features and associated engineering geological problems of both the limestone hills and the bedrock are discussed in the paper. Rockfalls, sinkholes, cavities, etc. are some of the common engineering geological problems associated with limestone terrains. Some local case studies are provided as illustrations. Finally the rock mechanical properties of limestone is discussed at the end of the paper.展开更多
-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model te...-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port.展开更多
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to crea...Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.展开更多
[Objective] The aim was to construct a virtuous eco-system covering multi-populations, multi-layers and multi-products and to explore timber production of physical and non-physical products, in order to extend product...[Objective] The aim was to construct a virtuous eco-system covering multi-populations, multi-layers and multi-products and to explore timber production of physical and non-physical products, in order to extend products operated in forestry engineering and seek a novel model for forestry engineering. [Method] A three-dimensional operation project was designed based on forestry lands in Bagua Zhou in Nanjing City. [Result] In the project, timber products, by-products in forest and relaxing products supplimented and supported each other, and a virtuous circle has been achieved. [Conclusion] The novel model makes simultaneous relaxing and working possible, which creat vaule together.展开更多
In this paper a case study is presented where refined 3D reservoir geology models, well pattern pilot test and Real-time GeoSteering tools have been integrated to optimize production performance of a viscous oil reser...In this paper a case study is presented where refined 3D reservoir geology models, well pattern pilot test and Real-time GeoSteering tools have been integrated to optimize production performance of a viscous oil reserve. The viscous reserves were of high structural dip angle. In addition delta depositional system represented highly variable geomorphology, where stacked sandbodies and shale bedding are crossing each other frequently. In order to keep a higher production rate, using horizontal wells along with water injection was not enough;therefore, detailed reservoir characterization, well pattern pilot experiment and GeoSteering were used to optimize previous development strategy and keep horizontal trajectories safely landing into reservoir target zone. The stratigraphic sequence architecture that is derived from seismic interpretations captured the variation within these high dip structural backgrounds very effectively. The best combination of choices was “Injecting Water outside from OWC” and “Stair Shaped Horizontal Trajectories”. The borehole collision risks of these optimized strategies were then analyzed and controlled successfully by the GeoSteering tools during trajectory landing process. The reservoir development performance is improved tremendously as result of these renewed development strategies.展开更多
Any tidal defense engineering involves the collection and analysis of massive information about engineering structures and their surrounding environment. Traditional method, which is carried out mainly by means of two...Any tidal defense engineering involves the collection and analysis of massive information about engineering structures and their surrounding environment. Traditional method, which is carried out mainly by means of twodimensional drawings and textures, is not efficient and intuitive enough to analyze the whole project and reflect its spatial relationship. Three-dimensional visual simulation provides an advanced technical means of solving this problem. In this paper, triangular irregular network (TIN) model simplified by non-uniform rational B-splines (NURBS) technique was used to establish the digital terrain model (DTM) of a super large region. Simulation of dynamic water surface was realized by combining noise function with sine wave superposition method. Models of different objects were established with different modeling techniques according to their characteristics. Application of texture mapping technology remarkably improved the authenticity of the models. Taking the tidal defense engineering in the new coastal region of Tianjin as a case study, three-dimensional visual simulation and dynamic roaming of the study area were realized, providing visual analysis and visible demonstration method for the management and emergency decision-making associated with construction.展开更多
The development of long linear structures such as roads, rail roads, tunnels, canals and pipelines often has unique engineering geology challenges. These include geological modeling, the identification of material str...The development of long linear structures such as roads, rail roads, tunnels, canals and pipelines often has unique engineering geology challenges. These include geological modeling, the identification of material strength and support factors, stability and risk issues, material excavation characteristics and the proposal of techniques for overcoming geotechnical problems, which are normally assessed as part of the conventional engineering geological investigation. An additional factor that is becoming increasingly important but is seldom included in investigations is the sustainability of the geotechnical inputs, in contrast to the sustainability of the project which is generally included. Sustainability issues revolve around the non-renewable nature of most construction resources and there is no doubt that the injudicious use of these construction materials and construction water is not sustainable in the long term: it is thus essential that the engineering geo-logical investigation should take cognizance of such issues and be adapted to provide the design engineer with the information that will maximize the sustainability options. This will also require a closer on-going relation-ship between the engineering geologist and the design engineer. This paper highlights significant sustainability issues (note that these differ from conventional environmental issues) and suggests some mitigating solutions. The sustainability issues discussed include primarily material and water usage, with some reference to energy conservation (mostly through alternative material usage and processing techniques and transportation).展开更多
The paper discusses the problems of engineering geology in environmental geoscience from several aspects. For natural sciences and social sciences, it deduces essential theory from logistic cycle model, logic mapping ...The paper discusses the problems of engineering geology in environmental geoscience from several aspects. For natural sciences and social sciences, it deduces essential theory from logistic cycle model, logic mapping and Verhulst model. It had been discovered that these aspects are equal. However, these were the studies of normal effects. We must establish mathematical model to check from contrary course for gray forecasting and decision-making and answer several questions satisfactorily.展开更多
This paper discusses the designing plan of ORACLE-based Bohai Sea engineering geology database structure from requisition analysis, conceptual structure analysis, logical structure analysis, physical structure analysi...This paper discusses the designing plan of ORACLE-based Bohai Sea engineering geology database structure from requisition analysis, conceptual structure analysis, logical structure analysis, physical structure analysis and security designing. In the study, we used the object-oriented Unified Modeling Language (UML) to model the conceptual structure of the database and used the powerful function of data management which the object-oriented and relational database ORACLE provides to organize and manage the storage space and improve its security performance. By this means, the database can provide rapid and highly effective performance in data storage, maintenance and query to satisfy the application requisition of the Bohai Sea Oilfield Paradigm Area Information System.展开更多
In this paper, the framework and technologic process of engineering geology demonstration information system (EGDIS) of the Bohai oilfield are presented, and the key technologies for system modeling, such as storage...In this paper, the framework and technologic process of engineering geology demonstration information system (EGDIS) of the Bohai oilfield are presented, and the key technologies for system modeling, such as storage and processing technology of multi-source and heterogeneous data, integrated display technology of multi-source information and multiple safeguard system design are studied. EGDIS of the Bohai oilfield is an integrated application system based on the data standardization and digital seabed database, has the function to realize the standardization/conformity, input/output, inquiry and display of the multi-source and heterogeneous data and graphics, and provides multiple comprehensive analysis and application services, which will provide shared and scientific basic data for the marine engineering construction and oilfield engineering safeguard.展开更多
Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the inter...Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.展开更多
This is a field report on a comprehensive study of the Atamir Formation from the engineering geology perspective using the related indices. The Atamir Formation of the Cretaceous Period, which has outcropped in the fo...This is a field report on a comprehensive study of the Atamir Formation from the engineering geology perspective using the related indices. The Atamir Formation of the Cretaceous Period, which has outcropped in the form of thick frequencies of grey-knotted sandstone and black shales, is situated in the Kope Dagh zone. A survey of discontinuities together with bedding was carried out to study slope stability. The layers have a general east-west trend with a gentle slope towards the south. Because of the tectonic and stratigraphic differences, and with the purpose of facilitating surveys related to joint study of the outcrop, the formation in the study region was divided into three units. The lower unit is made of shale, the middle of sandstone, and the upper of marlstone. All three units were studied from the perspective of geomechanical classification, rock mass indices, geological strength, geomechanical indices, and wedge instability analysis under dry and wet conditions, and the results were investigated in the form of various images and figures. The Dips software was used to display the rose diagram and stereographic projection of each unit, the Swedge software to analyze instability of the wedges, and the Roctab software to analyze the geomechanical parameters and present the outputs along with the description of each unit.展开更多
文摘The purpose of this paper is to discuss the integration of the elements of civic and political education into the engineering geology course to improve students’ideological and moral qualities.It is proposed that by integrating elements of civic and political education,students are guided to form a positive attitude toward engineering practice as well as correct values and ethics.With regard to the teaching design and implementation of the course,the implementation paths of teacher team building,careful teaching design,innovative teaching methods,and the integration of civic and politics in practical teaching are proposed to summarize the significance of integrating the elements of civic and political education in the construction of the engineering geology course.It is pointed out that this integration not only improves the quality of the course,but also provides a reference for the civic and political education of other similar professional courses.This integration not only focuses on the teaching of professional knowledge,but also pays more attention to the cultivation of students’ideology and morality,which provides a model and guidance for shaping new talents with all-round development.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
基金supported by the National Natural Science Foundation of China(42177184)the Balance Research Funds of the Chinese Academy of Geological Sciences(60)the China Geological Survey(DD20221816)。
文摘At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 earthquake,which has very strong seismic activity.Therefore,carrying out engineering construction in the Sichuan-Tibet transport corridor is a huge challenge for geological technological personnel.To determining the spatial geometric distribution,activity of active faults and geological safety risk in the Sichuan-Tibet transport corridor.Based on remote sensing images,ground surveys,and chronological tests,as well as the deep geophysical and current GPS data,we investigated the geometry,segmentation,and paleoearthquake history of five major active fault zones in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,namely the Xianshuihe,Litang,Batang,Jiali-Chayu and Lulang-Yigong.The five major fault zones are all Holocene active faults,which contain strike-slip components as well as thrust or normal fault components,and contain multiple branch faults.The Selaha-Kangding segment of the Xianshuihe fault zone,the Maoyaba and Litang segment of the Litang fault zone,the middle segment(Yigong-Tongmai-Bomi)of Jiali-Chayu fault zone and Lulang-Yigong fault zone have the risk of experiencing strong earthquakes in the future,with a high possibility of the occurrence of MS≥7.0 earthquakes.The Jinsha River and the Palong-Zangbu River,which is a high-risk area for geological hazard chain risk in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor.Construction and safe operation Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,need strengthen analysis the current crustal deformation,stress distribution and fault activity patterns,clarify active faults relationship with large earthquakes,and determine the potential maximum magnitude,epicenters,and risk range.This study provides basic data for understanding the activity,seismicity,and tectonic deformation patterns of the regional faults in the Sichuan-Tibet transport corridor.
基金Funding for this research was provided by the National Natural Science Foundation of China (42022052,42277138,and 52108337)the National Key R&D Program of China (2022YFC2803800)+1 种基金the Shandong Provincial Natural Science Foundation (ZR2020YQ29)UCL's Department of Civil,Environmental and Geomatic Engineering,and Ocean University of China.
文摘Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by efforts to achieve a low-carbon economy,deep seabed mining will play an important role in addressing energy-and resource-related problems in the future.However,deep seabed mining remains in the exploratory stage,with many challenges presented by the high-pressure,low-temperature,and complex geologic and hydrodynamic environments in deep-sea mining areas,which are inaccessible to human activities.Thus,considerable efforts are required to ensure sustainable,economic,reliable,and safe deep seabed mining.This study reviews the latest advances in marine engineering geology and the environment related to deep-sea min-ing activities,presents a bibliometric analysis of the development of ocean mineral resources since the 1950s,summarizes the development,theory,and issues related to techniques for the three stages of ocean mining(i.e.,exploration,extraction,and closure),and discusses the engineering geology environment,geological disasters,in-situ monitoring techniques,envi-ronmental protection requirements,and environmental effects in detail.Finally,this paper gives some key conclusions and future perspectives to provide insights for subsequent studies and commercial mining operations.
基金Project supported by the National Outstanding Youth Researchers Foundation (No.49525101)the Opening Research Foundation from LIESMARS(WKL(96)0302)
文摘The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there are no perfect data structures that can describe all spatial entities. Every data structure has its own advantages and disadvantages. It is difficult to design a single data structure to meet different needs. The important subject in the3-D data models is developing a data model that has integrated vector and raster data structures. A special 3-D spatial data model based on distributing features of spatial entities should be designed. We took the geological exploration engineering as the research background and designed an integrated data model whose data structures integrats vector and raster data byadopting object-oriented technique. Research achievements are presented in this paper.
基金This project was financially supported by the National Natrual Science Foundation of China(No.49676286)
文摘The basic features and acoustic-physical properties of calcareous seafloor soils in the tropic sea area are obviously different from those of sediments mainly composed of terrigenous materials in the South China Sea. Generally calcareous soils, composed of carbonate particles of marine organism remains. have the characteristics of high water content, high porosity, low wet density, high sound velocity and greatly varied comprehensive strength. Recognizing the differences between calcareous soils and terrigenous sediments and engineering geologic significance of calcareous soils is crucial for seafloor geologic research and geotechnical survey for pile-jacket platform foundation design.
文摘Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of
文摘This paper provides an overview of the engineering geology of limestone. Limestone is of rather wide occurrence in Malaysia. It is interesting in view of the unique landforms and karstic features that are encountered in limestone terrains, e.g. steep, subvertical limestone cliffs rising abruptly and majestically above the ground surface and highly variable and pinnacled subterranean limestone bedrock. The karstic features and associated engineering geological problems of both the limestone hills and the bedrock are discussed in the paper. Rockfalls, sinkholes, cavities, etc. are some of the common engineering geological problems associated with limestone terrains. Some local case studies are provided as illustrations. Finally the rock mechanical properties of limestone is discussed at the end of the paper.
文摘-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port.
基金supported by the National Natural Science Foundation of China,No.81301050,81401067,81271392,81471275,81541034the Natural Science Foundation of Tianjin City of China,No.14JCQNJC10200,15JCQNJC11100,16JCYBJC27600
文摘Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer- aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine.
文摘[Objective] The aim was to construct a virtuous eco-system covering multi-populations, multi-layers and multi-products and to explore timber production of physical and non-physical products, in order to extend products operated in forestry engineering and seek a novel model for forestry engineering. [Method] A three-dimensional operation project was designed based on forestry lands in Bagua Zhou in Nanjing City. [Result] In the project, timber products, by-products in forest and relaxing products supplimented and supported each other, and a virtuous circle has been achieved. [Conclusion] The novel model makes simultaneous relaxing and working possible, which creat vaule together.
文摘In this paper a case study is presented where refined 3D reservoir geology models, well pattern pilot test and Real-time GeoSteering tools have been integrated to optimize production performance of a viscous oil reserve. The viscous reserves were of high structural dip angle. In addition delta depositional system represented highly variable geomorphology, where stacked sandbodies and shale bedding are crossing each other frequently. In order to keep a higher production rate, using horizontal wells along with water injection was not enough;therefore, detailed reservoir characterization, well pattern pilot experiment and GeoSteering were used to optimize previous development strategy and keep horizontal trajectories safely landing into reservoir target zone. The stratigraphic sequence architecture that is derived from seismic interpretations captured the variation within these high dip structural backgrounds very effectively. The best combination of choices was “Injecting Water outside from OWC” and “Stair Shaped Horizontal Trajectories”. The borehole collision risks of these optimized strategies were then analyzed and controlled successfully by the GeoSteering tools during trajectory landing process. The reservoir development performance is improved tremendously as result of these renewed development strategies.
基金Supported by Tianjin Research Program of Application Foundation and Advanced Technology (No.12JCZDJC29200)Foundation for Innovative Research Groups of National Natural Science Foundation of China (No.51021004)National Key Technology R&D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘Any tidal defense engineering involves the collection and analysis of massive information about engineering structures and their surrounding environment. Traditional method, which is carried out mainly by means of twodimensional drawings and textures, is not efficient and intuitive enough to analyze the whole project and reflect its spatial relationship. Three-dimensional visual simulation provides an advanced technical means of solving this problem. In this paper, triangular irregular network (TIN) model simplified by non-uniform rational B-splines (NURBS) technique was used to establish the digital terrain model (DTM) of a super large region. Simulation of dynamic water surface was realized by combining noise function with sine wave superposition method. Models of different objects were established with different modeling techniques according to their characteristics. Application of texture mapping technology remarkably improved the authenticity of the models. Taking the tidal defense engineering in the new coastal region of Tianjin as a case study, three-dimensional visual simulation and dynamic roaming of the study area were realized, providing visual analysis and visible demonstration method for the management and emergency decision-making associated with construction.
文摘The development of long linear structures such as roads, rail roads, tunnels, canals and pipelines often has unique engineering geology challenges. These include geological modeling, the identification of material strength and support factors, stability and risk issues, material excavation characteristics and the proposal of techniques for overcoming geotechnical problems, which are normally assessed as part of the conventional engineering geological investigation. An additional factor that is becoming increasingly important but is seldom included in investigations is the sustainability of the geotechnical inputs, in contrast to the sustainability of the project which is generally included. Sustainability issues revolve around the non-renewable nature of most construction resources and there is no doubt that the injudicious use of these construction materials and construction water is not sustainable in the long term: it is thus essential that the engineering geo-logical investigation should take cognizance of such issues and be adapted to provide the design engineer with the information that will maximize the sustainability options. This will also require a closer on-going relation-ship between the engineering geologist and the design engineer. This paper highlights significant sustainability issues (note that these differ from conventional environmental issues) and suggests some mitigating solutions. The sustainability issues discussed include primarily material and water usage, with some reference to energy conservation (mostly through alternative material usage and processing techniques and transportation).
文摘The paper discusses the problems of engineering geology in environmental geoscience from several aspects. For natural sciences and social sciences, it deduces essential theory from logistic cycle model, logic mapping and Verhulst model. It had been discovered that these aspects are equal. However, these were the studies of normal effects. We must establish mathematical model to check from contrary course for gray forecasting and decision-making and answer several questions satisfactorily.
文摘This paper discusses the designing plan of ORACLE-based Bohai Sea engineering geology database structure from requisition analysis, conceptual structure analysis, logical structure analysis, physical structure analysis and security designing. In the study, we used the object-oriented Unified Modeling Language (UML) to model the conceptual structure of the database and used the powerful function of data management which the object-oriented and relational database ORACLE provides to organize and manage the storage space and improve its security performance. By this means, the database can provide rapid and highly effective performance in data storage, maintenance and query to satisfy the application requisition of the Bohai Sea Oilfield Paradigm Area Information System.
文摘In this paper, the framework and technologic process of engineering geology demonstration information system (EGDIS) of the Bohai oilfield are presented, and the key technologies for system modeling, such as storage and processing technology of multi-source and heterogeneous data, integrated display technology of multi-source information and multiple safeguard system design are studied. EGDIS of the Bohai oilfield is an integrated application system based on the data standardization and digital seabed database, has the function to realize the standardization/conformity, input/output, inquiry and display of the multi-source and heterogeneous data and graphics, and provides multiple comprehensive analysis and application services, which will provide shared and scientific basic data for the marine engineering construction and oilfield engineering safeguard.
文摘Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.
文摘This is a field report on a comprehensive study of the Atamir Formation from the engineering geology perspective using the related indices. The Atamir Formation of the Cretaceous Period, which has outcropped in the form of thick frequencies of grey-knotted sandstone and black shales, is situated in the Kope Dagh zone. A survey of discontinuities together with bedding was carried out to study slope stability. The layers have a general east-west trend with a gentle slope towards the south. Because of the tectonic and stratigraphic differences, and with the purpose of facilitating surveys related to joint study of the outcrop, the formation in the study region was divided into three units. The lower unit is made of shale, the middle of sandstone, and the upper of marlstone. All three units were studied from the perspective of geomechanical classification, rock mass indices, geological strength, geomechanical indices, and wedge instability analysis under dry and wet conditions, and the results were investigated in the form of various images and figures. The Dips software was used to display the rose diagram and stereographic projection of each unit, the Swedge software to analyze instability of the wedges, and the Roctab software to analyze the geomechanical parameters and present the outputs along with the description of each unit.