期刊文献+
共找到1,984篇文章
< 1 2 100 >
每页显示 20 50 100
Development of a toroidal soft x-ray imaging system and application for investigating three-dimensional plasma on J-TEXT
1
作者 赵传旭 李建超 +9 位作者 张晓卿 王能超 丁永华 杨州军 江中和 严伟 李杨波 毛飞越 任正康 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期94-99,共6页
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat... A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma. 展开更多
关键词 SXR imaging J-TEXT tokamak three-dimensional measurement MHD
下载PDF
Three-dimensional forward modeling and inversion of borehole-to-surface electrical imaging with different power sources 被引量:7
2
作者 Bai Ze Tan Mao-Jin Zhang Fu-Lai 《Applied Geophysics》 SCIE CSCD 2016年第3期437-448,578,共13页
Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward ... Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low- resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source. 展开更多
关键词 Borehole-to-surface electrical imaging different types of exciting sources potential characteristic forward modeling resistivity inversion
下载PDF
GPU-accelerated three-dimensional reconstruction method of the Compton camera and its application in radionuclide imaging 被引量:1
3
作者 Ren-Yao Wu Chang-Ran Geng +6 位作者 Feng Tian Zhi-Yang Yao Chun-Hui Gong Hao-Nan Han Jian-Feng Xu Yong-Shun Xiao Xiao-Bin Tang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期54-68,共15页
A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method wit... A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras. 展开更多
关键词 Compton camera three-dimensional reconstruction Radionuclide imaging GPU
下载PDF
Single exposure passive three-dimensional information reconstruction based on an ordinary imaging system
4
作者 窦申成 刘璠 +3 位作者 李虎 姚旭日 刘雪峰 翟光杰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期446-455,共10页
Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imagi... Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications. 展开更多
关键词 passive three-dimensional imaging single exposure point spread function compressed sensing
下载PDF
Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
5
作者 李玉冰 王建 +3 位作者 苏畅 林伟军 王秀明 骆毅 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期362-372,共11页
High-resolution images of human brain are critical for monitoring the neurological conditions in a portable and safe manner.Sound speed mapping of brain tissues provides unique information for such a purpose.In additi... High-resolution images of human brain are critical for monitoring the neurological conditions in a portable and safe manner.Sound speed mapping of brain tissues provides unique information for such a purpose.In addition,it is particularly important for building digital human acoustic models,which form a reference for future ultrasound research.Conventional ultrasound modalities can hardly image the human brain at high spatial resolution inside the skull due to the strong impedance contrast between hard tissue and soft tissue.We carry out numerical experiments to demonstrate that the time-domain waveform inversion technique,originating from the geophysics community,is promising to deliver quantitative images of human brains within the skull at a sub-millimeter level by using ultra-sound signals.The successful implementation of such an approach to brain imaging requires the following items:signals of sub-megahertz frequencies transmitting across the inside of skull,an accurate numerical wave equation solver simulating the wave propagation,and well-designed inversion schemes to reconstruct the physical parameters of targeted model based on the optimization theory.Here we propose an innovative modality of multiscale deconvolutional waveform inversion that improves ultrasound imaging resolution,by evaluating the similarity between synthetic data and observed data through using limited length Wiener filter.We implement the proposed approach to iteratively update the parametric models of the human brain.The quantitative imaging method paves the way for building the accurate acoustic brain model to diagnose associated diseases,in a potentially more portable,more dynamic and safer way than magnetic resonance imaging and x-ray computed tomography. 展开更多
关键词 ultrasound brain imaging full waveform inversion high resolution digital body
下载PDF
Linearized waveform inversion for vertical transversely isotropic elastic media:Methodology and multi-parameter crosstalk analysis
6
作者 Ke Chen Lu Liu +5 位作者 Li-Nan Xu Fei Hu Yuan Yang Jia-Hui Zuo Le-Le Zhang Yang Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期252-271,共20页
Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuit... Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs. 展开更多
关键词 ELASTIC ANISOTROPY Least-squares imaging Waveform inversion Computational geophysics
下载PDF
Piecewise Acoustic Source Imaging with Unknown Speed of Sound Using a Level-Set Method
7
作者 Guanghui Huang Jianliang Qian Yang Yang 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1070-1095,共26页
We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of s... We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D. 展开更多
关键词 inverse gravimetry Acoustic source imaging inversion of sound speed Level-set method inverse problem
下载PDF
Microwave Through Wall Imaging via An Induced Current Learning Method
8
作者 Pengjin Lan Jianguo Huang Tianyi Zhou 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期248-254,共7页
In this paper,an induced current learning method(ICLM)for microwave through wall imaging(TWI),named as TWI-ICLM,is proposed.In the inversion of induced current,the unknown object along with the enclosed walls are trea... In this paper,an induced current learning method(ICLM)for microwave through wall imaging(TWI),named as TWI-ICLM,is proposed.In the inversion of induced current,the unknown object along with the enclosed walls are treated as a combination of scatterers.Firstly,a non-iterative method called distorted-Born backpropagation(DB-BP)is utilized to generate the initial result.In the training stage,several convolutional neural networks(CNNs)are cascaded to improve the estimated induced current.In addition,a hybrid loss function consisting of the induced current error and the permittivity error is used to optimize the network parameters.Finally,the relative permittivity images are conducted analytically using the predicted current based on ICLM.Both the numerical and experimental TWI tests prove that,the proposed method can achieve better imaging accuracy compared to traditional distorted-Born iterative method(DBIM). 展开更多
关键词 through wall imaging inverse scattering problem convolutional neural network(CNN)
下载PDF
Evaluating the use of three-dimensional reconstruction visualization technology for precise laparoscopic resection in gastroesophageal junction cancer
9
作者 Dan Guo Xiao-Yan Zhu +2 位作者 Shuai Han Yu-Shu Liu Da-Peng Cui 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第5期1311-1319,共9页
BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby provi... BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning. 展开更多
关键词 Gastroesophageal junction cancer ENDOSCOPY Tumor resection three-dimensional reconstruction visualization Two-dimensional imaging computed tomography
下载PDF
Parallel Technologies with Image Processing Using Inverse Filter
10
作者 Rahaf Alsharhan Areej Muheef +2 位作者 Yasmin Al Ibrahim Afnan Rayyani Yasir Alguwaifli 《Journal of Computer and Communications》 2024年第1期110-119,共10页
Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights t... Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores. 展开更多
关键词 PARALLEL PARALLELIZATION image Processing inverse Filtering OPENMP Race Conditions
下载PDF
Centimeter-sized Cs_(3)Cu_(2)I_(5)single crystals grown by oleic acid assisted inverse temperature crystallization strategy and their films for high-quality X-ray imaging 被引量:1
11
作者 Tao Chen Xin Li +9 位作者 Yong Wang Feng Lin Ruliang Liu Wenhua Zhang Jie Yang Rongfei Wang Xiaoming Wen Bin Meng Xuhui Xu Chong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期382-389,共8页
Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r... Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging. 展开更多
关键词 inverse temperature crystal growth Cs_(3)Cu_(2)I_(5)single crystal Vapor deposition Cs_(3)Cu_(2)I_(5)films X-ray imaging
下载PDF
Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks 被引量:9
12
作者 江沸菠 戴前伟 董莉 《Applied Geophysics》 SCIE CSCD 2016年第2期267-278,417,共13页
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian ne... Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion. 展开更多
关键词 Electrical resistivity imaging Bayesian neural network REGULARIZATION nonlinear inversion K-medoids clustering
下载PDF
Survey of methods and principles in three-dimensional reconstruction from two-dimensional medical images
13
作者 Mriganka Sarmah Arambam Neelima Heisnam Rohen Singh 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期199-217,共19页
Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new p... Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted. 展开更多
关键词 three-dimensional reconstruction Human organ Medical images
下载PDF
Asymmetric image encryption algorithm based on a new three-dimensional improved logistic chaotic map
14
作者 叶国栋 吴惠山 +1 位作者 黄小玲 Syh-Yuan Tan 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期153-163,共11页
Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shami... Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8. 展开更多
关键词 three-dimensional improved logistic chaotic map(3D-ILM) Rivest–Shamir–Adleman(RSA)algorithm image encryption CONFUSION ENTROPY
下载PDF
Three-dimensional gravity inversion based on sparse recovery iteration using approximate zero norm 被引量:6
15
作者 Meng Zhao-Hai Xu Xue-Chun Huang Da-Nian 《Applied Geophysics》 SCIE CSCD 2018年第3期524-535,共12页
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer... This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated. 展开更多
关键词 three-dimensional gravity inversion sparse recovery APPROXIMATE ZERO NORM iterative method density constraint PENALTY function
下载PDF
Application of Three-Dimensional Magnetic Resonance Imaging in the Diagnosis of Perianal Abscess 被引量:5
16
作者 Fang Zhang Shan Xiong +1 位作者 Sibin Liu Peng Xia 《Health》 2019年第5期535-545,共11页
Perianal abscess is a common disease in anorectal surgery. If the diagnosis is not clear and the cure is thoroughly cleared, the recurrence and spread of anal fistula will cause life-long pain. Objective: To investiga... Perianal abscess is a common disease in anorectal surgery. If the diagnosis is not clear and the cure is thoroughly cleared, the recurrence and spread of anal fistula will cause life-long pain. Objective: To investigate the application of 3.0T MRI 3D CUBE T2WI lipid suppression sequence in the diagnosis of perianal abscess. Methods: Thirty-six patients with perianal abscess confirmed by operation were examined with 2D T2WI and 3D CUBE T2WI lipid suppression sequences before operation. Two imaging techniques were evaluated to show the types of perianal abscess, the number of abscesses, the number of internal orifices of abscess, and the number of fistula branches with anal fistula in abscess. Results: Among 36 cases of perianal abscess, there were 5 cases of anal subcutaneous abscess, 12 cases of ischiorectal space abscess (8 cases complicated with anal fistula), 6 cases of posterior anal space abscess, 5 cases of anal sphincter abscess (3 cases complicated with anal fistula), 2 cases of high intermuscular abscess, 2 cases of rectal submucosal abscess, 3 cases of complex abscess (3 cases complicated with anal fistula), 1 case of misdiagnosis, 2D T2WI lipid suppression sequence and 3D CUBE T2WI suppression. The accuracy of lipid sequence abscess typing was 80.6% (29/36) and 88.9% (32/36), respectively, with no significant difference (P > 0.05). Thirty-six patients were surgically diagnosed as having 32 internal orifices, 68.8% (22/32) and 93.8% (30/32) of 2D T2WI and 3D CUBE T2WI lipid-suppressing sequences, respectively, with significant difference (P Conclusion: 3D CUBE T2WI lipid suppression sequence is superior to 2D T2WI lipid suppression sequence in the classification of perianal abscess, the number of internal orifices of abscess and the number of fistula branches of abscess complicated with anal fistula. It can also determine the number of internal orifices of abscess complicated with anal fistula, the number of fistula branches, the shape of primary and branch fistula and the relationship among pelvic floor muscle tissues. It can provide more accurate images for preoperative and intraoperative clinical surgery. 展开更多
关键词 Magnetic RESONANCE imaging three-dimensional imaging PERIANAL ABSCESS
下载PDF
Optimized cardiac magnetic resonance imaging inversion recovery sequence for metal artifact reduction and accurate myocardial scar assessment in patients with cardiac implantable electronic devices 被引量:2
17
作者 El-Sayed H Ibrahim Mason Runge +6 位作者 Jadranka Stojanovska Prachi Agarwal Maryam Ghadimi-Mahani Anil Attili Thomas Chenevert Chiel den Harder Frank Bogun 《World Journal of Radiology》 CAS 2018年第9期100-107,共8页
Late gadolinium enhancement(LGE) cardiovascular magnetic resonance(CMR) is the gold standard for imaging myocardial viability.An important application of LGE CMR is the assessment of the location and extent of the myo... Late gadolinium enhancement(LGE) cardiovascular magnetic resonance(CMR) is the gold standard for imaging myocardial viability.An important application of LGE CMR is the assessment of the location and extent of the myocardial scar in patients with ventricular tachycardia(VT), which allows for more accurate identification of the ablation targets.However, a large percentage of patients with VT have cardiac implantable electronic devices(CIEDs), which is a relative contraindication for cardiac magnetic resonance imaging due to safety and image artifact concerns.Previous studies showed that these patients can be safely scanned on 1.5 T scanners provided that an adequate imaging protocol is adopted.Nevertheless, imaging patients with a CIED result in metal artifacts due to the strong frequency off-resonance effects near the device; therefore, the spins in the surrounding myocardium are not completely inverted, and thus give rise to hyperintensity artifacts.These artifacts obscure the myocardial scar tissue and limit the ability to study the correlation between the myocardial scar structure and the electro-anatomical map during catheter ablation.In this study, we developed a modified inversion recovery technique to alleviate the CIED-induced metal artifacts and improve the diagnostic image quality of LGE images in patients with CIEDs without increasing scan time or requiring additional hardware.The developed technique was tested in phantom experiments and in vivo scans, which showed its capability for suppressing the hyperintensity artifacts without compromising myocardium nulling in the resulting LGE images. 展开更多
关键词 Magnetic resonance imaging Heart LATE GADOLINIUM enhancement VIABILITY imaging inversion recovery CARDIAC IMPLANTABLE electronic devices
下载PDF
Early Diagnosis of Recurrent Optic Neuritis Using Contrast-Enhanced T2 Fluid-attenuated Inversion Recovery Imaging:a Case Report 被引量:4
18
作者 Lihui Li Houbin Huang Zhiye Chen 《Chinese Medical Sciences Journal》 CAS CSCD 2018年第2期130-134,共5页
The diagnosis of the recurrent optic neuritis is commonly established clinically,and sometimes it could be challenging because the involved optic nerve does not always show significant enhancement on conventional cont... The diagnosis of the recurrent optic neuritis is commonly established clinically,and sometimes it could be challenging because the involved optic nerve does not always show significant enhancement on conventional contrast enhanced-T1 weighted imaging(CE-T1W1).In this paper,we reported a middle-aged female with early diagnosis of recurrent optic neuritis using contrast-enhanced T2 fluid-attenuated inversion recovery imaging(CET2FLAIR).The involved optic nerve presented evident enhancement on CE-T2FLAIR and no enhancement on CE-T1W1.This case suggested that the CE-T2FLAIR may be a useful diagnostic tool specifically for the recurrent optic neuritis in clinical practice. 展开更多
关键词 T2 fluid-attenuated inversion recovery imaging magnetic resonance imaging optic neuritis
下载PDF
Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method 被引量:4
19
作者 DeYao Zhang WenYong Pan +3 位作者 DingHui Yang LingYun Qiu XingPeng Dong WeiJuan Meng 《Earth and Planetary Physics》 CSCD 2021年第2期149-157,共9页
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim... The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures. 展开更多
关键词 three-dimension FREQUENCY-DOMAIN NAD method forward modeling full waveform inversion
下载PDF
Electrical Structure of Wulingshan and Middle Jiangnan Orogen by Three-Dimensional Magnetotelluric Data Inversion 被引量:2
20
作者 RUAN Shuai YAN Jiayong +1 位作者 ZHANG Kun LV Qingtian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期80-81,共2页
Funded by The National Key Research and Development Program of China,China Deep Exploration(Sinoprobe)and The China Geological Suvery Project on 2009–2019,a large scale magnetotelluric sounding(MT)survey grid(Fig.1)h... Funded by The National Key Research and Development Program of China,China Deep Exploration(Sinoprobe)and The China Geological Suvery Project on 2009–2019,a large scale magnetotelluric sounding(MT)survey grid(Fig.1)has covered whole south China. 展开更多
关键词 magnetotelluric sounding three-dimensional inversion near-field effect regularized quasi-Newton inversion Jiangnan Orogen
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部