期刊文献+
共找到1,088篇文章
< 1 2 55 >
每页显示 20 50 100
Coupled Numerical Simulation of Electromagnetic and Flow Fields in a Magnetohydrodynamic Induction Pump
1
作者 He Wang Ying He 《Fluid Dynamics & Materials Processing》 EI 2024年第4期889-899,共11页
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf... Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices. 展开更多
关键词 magnetic fluid multi-physical field coupling induction pump numerical simulation liquid metal conveying
下载PDF
Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation 被引量:1
2
作者 Cheng Yao Min Wang +5 位作者 Youjin Ni Dazhi Wang Haibo Zhang Lidong Xing Jian Gong Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1716-1728,共13页
The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distrib... The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distribution were analyzed. Results showed that the columnar crystals could deflect and break when the traveling-wave magnetic field had low current intensity. With the increase in current intensity, the secondary dendrite arm spacing and solute permeability decreased, and the columnar crystal transformed into an equiaxed crystal. The electromagnetic force caused by the traveling-wave magnetic field changed the temperature gradient and velocity magnitude and promoted the breaking and fusing of dendrites. Dendrite compactness and composition uniformity were arranged in descending order as follows:columnar-toequiaxed transition (high current intensity), columnar crystal zone (low current intensity), columnar-to-equiaxed transition (low current intensity), and equiaxed crystal zone (high current intensity). Verified numerical simulation results combined with the boundary layer theory of solidification front and dendrite breaking–fusing model revealed the dendrite deflection mechanism and growth process. When thermal stress is not considered, and no narrow segment can be found in the dendrite, the velocity magnitude on the solidification front of liquid steel can reach up to 0.041 m/s before the dendrites break. 展开更多
关键词 high-strength steel traveling-wave magnetic field dendrite growth numerical simulation
下载PDF
High-resolution imaging of magnetic fields of banknote anti-counterfeiting strip using fiber diamond probe
3
作者 赵旭彤 何飞越 +5 位作者 薛雅文 马文豪 殷筱晗 夏圣开 曾明菁 杜关祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期720-727,共8页
Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic pr... Counterfeiting of modern banknotes poses a significant challenge,prompting the use of various preventive measures.One such measure is the magnetic anti-counterfeiting strip.However,due to its inherent weak magnetic properties,visualizing its magnetic distribution has been a longstanding challenge.In this work,we introduce an innovative method by using a fiber optic diamond probe,a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields.We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50denomination anti-counterfeiting strip.Additionally,we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip.The findings and method presented in this study hold broader significance,extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips.These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited. 展开更多
关键词 banknote anti-counterfeiting strip nitrogen-vacancy(NV)centers magnetic field imaging numerical simulation
下载PDF
Physical Simulation of Mold-Filling Processing of Thin-Walled Castings under Traveling Magnetic Field 被引量:7
4
作者 YanqingSU TiejunZHANG +4 位作者 JingjieGUO HongshengDING WeishengBI JunJIA HengzhiFU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第1期27-30,共4页
Mold-filling process of thin-walled castings under the condition of traveling magnetic field has been studied by physical simulation method using gallium melt and fast speed photography. Flow morphology and its format... Mold-filling process of thin-walled castings under the condition of traveling magnetic field has been studied by physical simulation method using gallium melt and fast speed photography. Flow morphology and its formation mechanism were obtained and discussed for thin-walled casting. The influences of magnetic field density on the filling ability, filling velocity and mold filling time have been studied. The differences in filling capability between gravity casting and casting under the traveling magnetic field have been compared. The results indicate that the mold filling ability of the gallium melt increases greatly under the condition of traveling magnetic field; the filling time is shortened from 18 s under gravity field to 3 s under the traveling magnetic field and average flow rate of the melt increases from 1.6 to 8.68 cm3/s; the change law of the cross-section morphology of the gallium melt during the mold filling is that at first, the cross-section area does not change, then it decreases gradually. When the front of the melt reaches the end of the mold cavity, the front melt will backfill the mold; the wider the width of mold cavity, the better the mold filling ability. The mold filling ability of gallium melt in mold with upper magnetic conductor is better than that without upper magnetic conductor. 展开更多
关键词 Traveling magnetic field Mould-filling Thin-walled casting Physical simulation
下载PDF
THREE-DIMENSIONAL CHARACTERISTICS AND HOMOGENIZATION OF ELECTROMAGNETIC FIELD IN SOFT-CONTACT CONTINUOUS CASTING MOLD 被引量:5
5
作者 A. Y. Deng, G.L. Jia and J.C. He (Key Laboratory for Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110004, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第2期137-142,共6页
The three-dimensional electromagnetic characteristics and non-uniform distribution of electromagnetic field in soft-contact continuous casting mold have been analyzed by numerical simulation. The results show that the... The three-dimensional electromagnetic characteristics and non-uniform distribution of electromagnetic field in soft-contact continuous casting mold have been analyzed by numerical simulation. The results show that the maximum electromagnetic flux density is found in front of slit; the electromagnetic flux density becomes large as the coil current and slit number increase. In a certain frequency range, the electromagnetic flux density increases with the increase of frequency and the frequency range is different with the change of azimuthal position along the inner wall of mold. The uniformity of electromagnetic field is influenced mainly by frequency and mold structure parameters. Increasing slit number and adjusting slit arrangement position can improve the electromagnetic flux density and the uniformity of electromagnetic field. For a soft-contact mold with 16 slits, when frequency is 20 kHz, the optimal slit arrangement parameter is a:b=1:2, c=0. 展开更多
关键词 Computer simulation Electromagnetic fields magnetic properties MOLDS Optimization Three dimensional
下载PDF
Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field 被引量:14
6
作者 汪彬 杨院生 +1 位作者 马晓平 童文辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期283-288,共6页
The effects of a pulsed magnetic field on the solidified microstructure of pure Mg were investigated.The results show that microstructure of pure Mg is considerably refined via columnar-to-equiaxed growth under the pu... The effects of a pulsed magnetic field on the solidified microstructure of pure Mg were investigated.The results show that microstructure of pure Mg is considerably refined via columnar-to-equiaxed growth under the pulsed magnetic field and the average grain size is refined to 260?? under the optimal processing conditions.A mathematical model was built to describe the interaction of the electromagnetic-flow fields during solidification with ANSYS software.The pulsed electric circuit was first solved and then it is substituted into the magnetic field model.The fluid flow model was solved with the acquired electromagnetic force.The effects of pulse voltage frequency on the current wave and on the distribution of magnetic and flow fields were numerically studied.The pulsed magnetic field increases melt convection,which stirs and fractures the dendritic arms into pieces.These broken pieces are transported into the bulk liquid by the liquid flow and act as nuclei to enhance grain refinement.The Joule heat effect produced by the electric current also participates in the microstructural refinement. 展开更多
关键词 pulsed magnetic field numerical simulation pure Mg microstructure refinement
下载PDF
Three-Dimensional Finite Element Numerical Simulation and Physical Experiment for Magnetism-Stress Detecting in Oil Casing 被引量:2
7
作者 MENG Fanshun ZHANG Jie +2 位作者 YANG Chaoqun YU Weizhe CHEN Yuxi 《Journal of Ocean University of China》 SCIE CAS 2015年第4期669-674,共6页
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i... The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment. 展开更多
关键词 oil casing damage magnetism-stress detecting magnetic anisotropy finite element analysis physical experiment relative magnetic permeability ANSYS three-dimensional numerical simulation
下载PDF
Magnetic Field Improvement in End Region of Rectangular Planar DC Magnetron Based on Particle Simulation 被引量:1
8
作者 邱清泉 励庆孚 +2 位作者 苏静静 焦余 Jim FINLEY 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第6期694-700,共7页
For a rectangular planar direct current (DC) magnetron, anomalous target erosion may occur in the curve-out region and inner side of the curved region. One key factor is that the magnetic field in the end region is ... For a rectangular planar direct current (DC) magnetron, anomalous target erosion may occur in the curve-out region and inner side of the curved region. One key factor is that the magnetic field in the end region is weaker than that in the straight region, and another important factor may be that there is a circumferential component of the magnetic field in the curved region. Through a calculation of three-dimensional magnetic field for the rectangular magnetron, a magnet structure shimmed by permanent magnet bars and ferromagnetic bars is proposed to solve the above problems. Through a three-dimensional non-self-consistent particle simulation and the Yamamura/Tawara formula, the target erosion profile could be predicted. The simulation results show that for an improved uniformity in magnetic field, the entire target utilization could be much enhanced. 展开更多
关键词 magnetron sputtering plasma magnetic field EROSION particle simulation
下载PDF
Numerical simulation of effects of cusp magnetic field on oxygen concentration of 300 mm CZ-Si 被引量:1
9
作者 WANG Yongtao XU Wenting +4 位作者 DAI Xiaolin XIAO Qinghua DENG Shujun YAN Zhirui ZHOU Qigang 《Rare Metals》 SCIE EI CAS CSCD 2012年第5期494-499,共6页
In magnetic Czochralski (MCZ) silicon growth, the distance and diameter of the electrified coils may affect the magnetic field intensity and melt flow. By changing the above parameters, the optimum geometric configura... In magnetic Czochralski (MCZ) silicon growth, the distance and diameter of the electrified coils may affect the magnetic field intensity and melt flow. By changing the above parameters, the optimum geometric configuration of the coils was attempted. Through analyses of the oxygen concentration distribution of the crystal/melt interface, axial and radial velocity distribution of melt and the magnetic field intensity in the melt, it is found that smaller diameter of coils contributes to reducing the needed current intensity and production costs. For a given current intensity, there is a best distance of coils when the oxygen concentration at crystal/melt interface reaches the lowest. © The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2012. 展开更多
关键词 Computer simulation magnetic fields SILICON
下载PDF
Simulation Researches on Influence of Different Axial Magnetic Fields on Anode Activity in High-current Vacuum Arcs 被引量:8
10
作者 WANG Lijun JIA Shenli CHEN Bin ZHOU Xin YANG Dingge SHI Zongqian 《中国电机工程学报》 EI CSCD 北大核心 2012年第13期I0018-I0018,201,共1页
纵向磁场对阳极活动的控制效果对于大电流真空电弧成功开断十分关键。采用建模仿真的方法,分析不同纵向磁场强度对阳极活动的影响。基于大电流真空电弧模型,仿真得到不同纵向磁场强度下输入阳极的能流密度分布,并以此作为阳极活动模... 纵向磁场对阳极活动的控制效果对于大电流真空电弧成功开断十分关键。采用建模仿真的方法,分析不同纵向磁场强度对阳极活动的影响。基于大电流真空电弧模型,仿真得到不同纵向磁场强度下输入阳极的能流密度分布,并以此作为阳极活动模型的边界条件,得到不同磁场强度下的阳极熔化、蒸发情况。仿真结果表明:对于工频电流(50Hz)电弧,阳极温度的最大值出现7ms时刻附近;随着纵向磁场的增大,阳极表面温度、饱和蒸汽压、阳极蒸汽流量都相应减小;随着纵向磁场的增大,熔化半径增大,但是熔化深度减小,改善了阳极的烧蚀情况。 展开更多
关键词 大电流真空电弧 阳极活性 轴向磁场 仿真方法 磁场控制 高电流
下载PDF
Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field:A theoretical model and particle-in-cell simulations 被引量:1
11
作者 Kai Huang Quan-Ming Lu +1 位作者 Rong-Sheng Wang Shui Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期369-374,共6页
Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulatio... Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR. 展开更多
关键词 magnetic reconnection reconnection electric field electron diffusion region particle-in-cell simulation
下载PDF
INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE FLOW FIELD IN MOLTEN SEMICONDUCTOR OF CZOCHRALSKI CRYSTAL GROWTH——A NUMERICAL SIMULATION 被引量:1
12
作者 Chen Xi Xue Minglun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1990年第1期81-84,共4页
Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic... Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnet. ic field with the intensity of several thousands Gauss, while the temperature field is affected only in a less extent by the magnetic field. 展开更多
关键词 melt flow in CZ crystal growth magnetic field effect numerical simulation
下载PDF
Simulation of the Temperature Dependence of the Density of States in a Strong Magnetic Field 被引量:1
13
作者 G. Gulyamov U. I. Erkaboev N. Yu. Sharibaev 《Journal of Modern Physics》 2014年第8期680-685,共6页
The temperature dependence of the density of states in strong magnetic fields. On the basis of the model constructed, a computer program calculating the density of electronic states in a quantizing magnetic field. Use... The temperature dependence of the density of states in strong magnetic fields. On the basis of the model constructed, a computer program calculating the density of electronic states in a quantizing magnetic field. Used new, based on quantum statistics, the approach to the calculation of the temperature dependence of the density of states in a strong magnetic field. Mathematical modeling of the density of states using the experimental values of a continuous density of states makes it possible to calculate the Landau levels. 展开更多
关键词 CYCLOTRON Frequency and Effective MASS A Quantizing magnetic field LANDAU LEVELS the Energy SPECTRUM the Numerical simulation and Experiment
下载PDF
Numerical Simulation of Tripolar Vortex in Dusty Plasma with Sheared Flow and Sheared Magnetic Field
14
作者 王舸 陈银华 谭立伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第4期2936-2938,共3页
This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space pla... This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space plasma, we have simulated the dynamics of the tripolar vortex. The results show that the tripolar vortex is largely stable in most cases, but a strongly sheared magnetic field will make the structure less stable, and lead it to decays into single vortices with the large space scale. These results are consistent with findings from former research about the dipolar vortex. 展开更多
关键词 dusty plasmas tripolar vortices numerical simulation shear flow shear magnetic field
下载PDF
Numerical simulation for mold-filling of thin-walled aluminum alloy castings in traveling magnetic field
15
作者 Shiping WU Bangsheng LI +3 位作者 Jingjie GUO Chengjun ZHANG Jun JIA Hengzhi FU 《China Foundry》 SCIE CAS 2004年第2期89-93,共5页
The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyz... The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testified the filling state of alloy in traveling magnetic field. The results of numerical simulation indicate that the mold-filling ability of gallium melt increases continually with the increase of the input ampere turns. 展开更多
关键词 traveling magnetic field thin-walled casting Al alloy mold-filling numerical simulation
下载PDF
Simulation study on electron heating characteristics in magnetic enhancement capacitively coupled plasmas with a longitudinal magnetic field
16
作者 Haiyun TAN Tianyuan HUANG +2 位作者 Peiyu JI Lanjian ZHUGE Xuemei WU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第10期67-73,共7页
The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and nu... The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations.It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field,and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant.Moreover,the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced,which is attributed to the increased average electron energy.We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field. 展开更多
关键词 capacitively coupled plasma longitudinal magnetic field electron heating PIC/MCC simulation
下载PDF
Three-dimensional Monte Carlo simulation of bulk fin field effect transistor
17
作者 王骏成 杜刚 +2 位作者 魏康亮 张兴 刘晓彦 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期421-426,共6页
In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanis... In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage. 展开更多
关键词 bulk fin field effect transistor (FinFET) three-dimensional (3D) Monte Carlo simulation surface roughness scattering substrate bias effect
下载PDF
Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method
18
作者 席丽莹 陈焕铭 +3 位作者 郑富 高华 童洋 马治 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期128-131,共4页
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mec... Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. 展开更多
关键词 three-dimensional Phase field simulations of Hysteresis and Butterfly Loops by the Finite Volume Method
下载PDF
Study of the Magnetocaloric Effect in La0.5Sm0.2Sr0.3Mn1-xFexO3 (x = 0 and 0.05) Manganites with the Mean-Field Theory
19
作者 Amnah Alofi Salha Khadhraui 《Advances in Materials Physics and Chemistry》 CAS 2024年第7期113-122,共10页
In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical... In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical and experimental curves of magnetizations and magnetic entropy changes, −ΔSM(T). Based on the mean-field generated −ΔSM(T), the substantial Temperature-averaged Entropy Change (TEC) values reinforce the appropriateness of these materials for use in magnetic refrigeration technology within TEC (10) values of 1 and 0.57 J∙kg−1∙K−1under 1 T applied magnetic field. 展开更多
关键词 MANGANITES magnetIZATION magnetocaloric Effect Mean field Model simulation
下载PDF
The effect of the guide field on energy conversion during collisionless magnetic reconnection
20
作者 Hui Xiao ZhiHong Zhong +4 位作者 Meng Zhou YongYuan Yi LiangJin Song Ye Pang XiaoHua Deng 《Earth and Planetary Physics》 CAS CSCD 2023年第4期436-444,共9页
Magnetic reconnection is well known as an efficient mechanism for transferring magnetic energy into plasma energy.However,how the energy conversion and partition between different species is influenced by the shear an... Magnetic reconnection is well known as an efficient mechanism for transferring magnetic energy into plasma energy.However,how the energy conversion and partition between different species is influenced by the shear angle of the reconnecting magnetic component(i.e.,the guide field strength)is not well understood.Using 2.5-dimensional particle-in-cell simulations,we investigated the energy conversion in reconnection with different guide fields.We found that the overall energy conversion first decreases steeply and then increases slowly when the guide field increases fromB_(g)=0 toB_(g)=4.The increase in energy conversion in the large guide field regime is due to the electron energy gain through the perpendicular channelJ_(⊥)·E_(⊥).The overall energy conversion is predominantly contributed byJ_(⊥)·E_(⊥) rather thanJ||E||.We further find that energy conversion mainly occurs within the reconnection front and the flux pileup region.However,the contribution from the fore reconnection front becomes important in large guide field regimes(3<B_(g)≤4)because of the enhanced electron energy gain. 展开更多
关键词 collisionless magnetic reconnection energy conversion guide field particle-in-cell simulation
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部