BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imag...BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.展开更多
Cardiovascular disease(CVD)is the leading cause of death and a major health care challenge globally.Coronary artery disease(CAD)is a primary underlying pathological process in the majority of cardiovascular disease ca...Cardiovascular disease(CVD)is the leading cause of death and a major health care challenge globally.Coronary artery disease(CAD)is a primary underlying pathological process in the majority of cardiovascular disease cases.Magnetic resonance imaging(MRI)can play a potentially important role in the management of CAD as a noninvasive imaging modality without ionizing radiation,although its early promise has not been delivered because of several crucial technical limitations.However,recent innovations in MRI have reopened the door,with tremendous opportunities for multiparametric assessment of CAD including luminal stenosis,plaque burden and composition,and disease activities such as infl ammation and hemorrhage.Novel MRI acquisition and reconstruction strategies now offer much increased spatial resolution and image quality and shortened examination times compared with conventional approaches.Recent clinical experiences of coronary MRI indicated the potential to improve the current management of coronary atherosclerosis,such as identifying the patients at the highest risk and evaluating therapeutic responses.In this review we discuss the latest technical advances and clinical insights in coronary MRI.展开更多
Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed ...Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed database up to December 2015, using various search terms including vessel wall imaging (VWI), high-resolution magnetic resonance imaging, intracranial arterial stenosis, black blood, and intracranial atherosclerosis. Study Selection: We reviewed peer-reviewed articles printed in English on imaging technique of VWI and characteristic findings of various intracranial vasculopathies on VWI. We organized this data to explain the value of VWI in clinical application. Results: VWI with black blood technique could provide high-quality images with submillimeter voxel size, and display both the vessel wall and lumen of intracranial artery simultaneously. Various intracranial vasculopathies (atherosclerotic or nonatherosclerotic) had differentiating features including pattern of wall thickening, enhancement, and vessel remodeling on VWI. This technique could be used for determining causes of stenosis, identification of stroke mechanism, risk-stratifying patients, and directing therapeutic management in clinical practice. In addition, a new morphological classification based on VWI could be established for predicting the efficacy of endovascular therapy. Conclusions: This review highlights the value of HRMR VWI for discrimination of different intracranial vasculopathies and directing therapeutic management.展开更多
In vivo studies on association between wall shear stress(WSS)and intracranial plaque are deficient.Based on the three-dimensional T1-weighted high-resolution magnetic resonance imaging(3DT1 HR-MRI)data of patients wit...In vivo studies on association between wall shear stress(WSS)and intracranial plaque are deficient.Based on the three-dimensional T1-weighted high-resolution magnetic resonance imaging(3DT1 HR-MRI)data of patients with low-grade stenotic(<50%)atherosclerotic middle cerebral artery(MCA)and subjects with normal MCA,we built a three-dimensional reconstructed WSS model by computational fluid dynamics(CFD)technique.Three-dimensional registration of the CFD model to the HR-MRI was performed with projections based on the resolution and thickness of the images.The relationships between the Wss at each side of the vessel wall and plaque location were analyzed.A total of 94 MCA plaques from 43 patients and 50 normal MCAs were analyzed.In the normal MCAs,WSS was lower at the ventral-inferior wall than at the dorsal-superior wall(proximal segment,p<0.001;middle segment,p<0.001)and lower at the inner wall than at the outer wall of the MCA curve(p<0.001).In atherosclerotic MCAs,similar low Wss regions were observed where plaques developed.The WSS ratio of the ventral-inferior wall to the dorsal-superior wall in atherosclerotic MCAs was lower than that in normal MCAs(p=0.002).The WSS_(inmer-outer)ratio in atherosclerotic MCAs was lower than that in normal MCAs(p=0.002).Low WSS was associated with MCA atherosclerosis formation and occurred mainly at the ventral inferior wall,which was anatomically opposite the orifices of penetrating arteries,and at the inner wall of the MCA curve.Overall,the results were well consistent with the low WSS theory in atherosclerosis formation.The reconstructed WSS model is a promising novel method for assessing an individualized vascular profile once validated by further studies.展开更多
Background:The effect of arteriosclerotic intracranial arterial vessel wall enhancement(IAVWE)on downstream collateral flow found in vessel wall imaging(VWI)is not clear.Regardless of the mechanism underlying IAVWE on...Background:The effect of arteriosclerotic intracranial arterial vessel wall enhancement(IAVWE)on downstream collateral flow found in vessel wall imaging(VWI)is not clear.Regardless of the mechanism underlying IAVWE on VWI,damage to the patient’s nervous system caused by IAVWE is likely achieved by affecting downstream cerebral blood flow.The present study aimed to investigate the effect of arteriosclerotic IAVWE on downstream collateral flow.Methods:The present study recruited 63 consecutive patients at the Second Hospital of Hebei Medical University from January 2021 to November 2021 with underlying atherosclerotic diseases and unilateral middle cerebral artery(MCA)M1-segment stenosis who underwent an magnetic resonance scan within 3 days of symptom onset.The patients were divided into 4 groups according to IAVWE and the stenosis ratio(Group 1,n=17;Group 2,n=19;Group 3,n=13;Group 4,n=14),and downstream collateral flow was analyzed using three-dimensional pseudocontinuous arterial spin labeling(3D-pCASL)and RAPID software.The National Institutes of Health Stroke Scale(NIHSS)scores of the patients were also recorded.Two-factor multivariate analysis of variance using Pillai’s trace was used as the main statistical method.Results:No statistically significant difference was found in baseline demographic characteristics among the groups.IAVWE,but not the stenosis ratio,had a statistically significant significance on the late-arriving retrograde flow proportion(LARFP),hypoperfusion intensity ratio(HIR),and NIHSS scores(F=20.941,P<0.001,Pillai’s trace statistic=0.567).The between-subject effects test showed that IAVWE had a significant effect on the three dependent variables:LARFP(R^(2)=0.088,F=10.899,P=0.002),HIR(R^(2)=0.234,F=29.354,P<0.001),and NIHSS(R^(2)=114.339,F=33.338,P<0.001).Conclusions:Arteriosclerotic IAVWE significantly reduced downstream collateral flow and affected relevant neurological deficits.It was an independent factor affecting downstream collateral flow and NIHSS scores,which should be a focus of future studies.Trial Registration:ChiCTR.org.cn,ChiCTR2100053661.展开更多
缺血性脑卒中的病因分型对临床治疗决策和预后判断有重要价值。近年来,随着高分辨率磁共振血管壁成像(high-resolution vessel wall magnetic resonance imaging,HR-VW-MRI)在脑卒中临床研究和实践中的应用增加,7 T MRI以其更高信噪比...缺血性脑卒中的病因分型对临床治疗决策和预后判断有重要价值。近年来,随着高分辨率磁共振血管壁成像(high-resolution vessel wall magnetic resonance imaging,HR-VW-MRI)在脑卒中临床研究和实践中的应用增加,7 T MRI以其更高信噪比和更优图像质量,可发现脑血管早期、细微的病理变化,为深入了解各种脑血管疾病的病理机制提供了新思路。然而,超高场强也存在B1场不均、扫描时间长等技术挑战。本文就7 T HR-VW-MRI在缺血性卒中病因分型及临床应用中的进展进行综述,深入分析7 T HR-VW-MRI在提升临床诊断精确性与指导临床治疗中的潜在价值,为临床实践与科研探索提供参考。展开更多
基金Supported by National Natural Science Foundation of China,No.82071871Guangdong Basic and Applied Basic Research Foundation,No.2021A1515220131+1 种基金Guangdong Medical Science and Technology Research Fund Project,No.2022111520491834Clinical Research Project of Shenzhen Second People's Hospital,No.20223357022。
文摘BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.
文摘Cardiovascular disease(CVD)is the leading cause of death and a major health care challenge globally.Coronary artery disease(CAD)is a primary underlying pathological process in the majority of cardiovascular disease cases.Magnetic resonance imaging(MRI)can play a potentially important role in the management of CAD as a noninvasive imaging modality without ionizing radiation,although its early promise has not been delivered because of several crucial technical limitations.However,recent innovations in MRI have reopened the door,with tremendous opportunities for multiparametric assessment of CAD including luminal stenosis,plaque burden and composition,and disease activities such as infl ammation and hemorrhage.Novel MRI acquisition and reconstruction strategies now offer much increased spatial resolution and image quality and shortened examination times compared with conventional approaches.Recent clinical experiences of coronary MRI indicated the potential to improve the current management of coronary atherosclerosis,such as identifying the patients at the highest risk and evaluating therapeutic responses.In this review we discuss the latest technical advances and clinical insights in coronary MRI.
文摘Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed database up to December 2015, using various search terms including vessel wall imaging (VWI), high-resolution magnetic resonance imaging, intracranial arterial stenosis, black blood, and intracranial atherosclerosis. Study Selection: We reviewed peer-reviewed articles printed in English on imaging technique of VWI and characteristic findings of various intracranial vasculopathies on VWI. We organized this data to explain the value of VWI in clinical application. Results: VWI with black blood technique could provide high-quality images with submillimeter voxel size, and display both the vessel wall and lumen of intracranial artery simultaneously. Various intracranial vasculopathies (atherosclerotic or nonatherosclerotic) had differentiating features including pattern of wall thickening, enhancement, and vessel remodeling on VWI. This technique could be used for determining causes of stenosis, identification of stroke mechanism, risk-stratifying patients, and directing therapeutic management in clinical practice. In addition, a new morphological classification based on VWI could be established for predicting the efficacy of endovascular therapy. Conclusions: This review highlights the value of HRMR VWI for discrimination of different intracranial vasculopathies and directing therapeutic management.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(Grant No.8202500477)the National Natural Science Foundation of China(Grants No.81471207,81671370,81661168015)2016 PUMCH science fund for junior faculty,and Shenzhen Science and Technology Innovation Commission(Grant No.JCYJ20160608153506088).
文摘In vivo studies on association between wall shear stress(WSS)and intracranial plaque are deficient.Based on the three-dimensional T1-weighted high-resolution magnetic resonance imaging(3DT1 HR-MRI)data of patients with low-grade stenotic(<50%)atherosclerotic middle cerebral artery(MCA)and subjects with normal MCA,we built a three-dimensional reconstructed WSS model by computational fluid dynamics(CFD)technique.Three-dimensional registration of the CFD model to the HR-MRI was performed with projections based on the resolution and thickness of the images.The relationships between the Wss at each side of the vessel wall and plaque location were analyzed.A total of 94 MCA plaques from 43 patients and 50 normal MCAs were analyzed.In the normal MCAs,WSS was lower at the ventral-inferior wall than at the dorsal-superior wall(proximal segment,p<0.001;middle segment,p<0.001)and lower at the inner wall than at the outer wall of the MCA curve(p<0.001).In atherosclerotic MCAs,similar low Wss regions were observed where plaques developed.The WSS ratio of the ventral-inferior wall to the dorsal-superior wall in atherosclerotic MCAs was lower than that in normal MCAs(p=0.002).The WSS_(inmer-outer)ratio in atherosclerotic MCAs was lower than that in normal MCAs(p=0.002).Low WSS was associated with MCA atherosclerosis formation and occurred mainly at the ventral inferior wall,which was anatomically opposite the orifices of penetrating arteries,and at the inner wall of the MCA curve.Overall,the results were well consistent with the low WSS theory in atherosclerosis formation.The reconstructed WSS model is a promising novel method for assessing an individualized vascular profile once validated by further studies.
基金Beijing Scholar 2015(No.2015-160)Health Commission of Hebei Province(No.20200919)Scientific Research Fund Project of the Second Hospital of Hebei Medical University(No.2HC202056)
文摘Background:The effect of arteriosclerotic intracranial arterial vessel wall enhancement(IAVWE)on downstream collateral flow found in vessel wall imaging(VWI)is not clear.Regardless of the mechanism underlying IAVWE on VWI,damage to the patient’s nervous system caused by IAVWE is likely achieved by affecting downstream cerebral blood flow.The present study aimed to investigate the effect of arteriosclerotic IAVWE on downstream collateral flow.Methods:The present study recruited 63 consecutive patients at the Second Hospital of Hebei Medical University from January 2021 to November 2021 with underlying atherosclerotic diseases and unilateral middle cerebral artery(MCA)M1-segment stenosis who underwent an magnetic resonance scan within 3 days of symptom onset.The patients were divided into 4 groups according to IAVWE and the stenosis ratio(Group 1,n=17;Group 2,n=19;Group 3,n=13;Group 4,n=14),and downstream collateral flow was analyzed using three-dimensional pseudocontinuous arterial spin labeling(3D-pCASL)and RAPID software.The National Institutes of Health Stroke Scale(NIHSS)scores of the patients were also recorded.Two-factor multivariate analysis of variance using Pillai’s trace was used as the main statistical method.Results:No statistically significant difference was found in baseline demographic characteristics among the groups.IAVWE,but not the stenosis ratio,had a statistically significant significance on the late-arriving retrograde flow proportion(LARFP),hypoperfusion intensity ratio(HIR),and NIHSS scores(F=20.941,P<0.001,Pillai’s trace statistic=0.567).The between-subject effects test showed that IAVWE had a significant effect on the three dependent variables:LARFP(R^(2)=0.088,F=10.899,P=0.002),HIR(R^(2)=0.234,F=29.354,P<0.001),and NIHSS(R^(2)=114.339,F=33.338,P<0.001).Conclusions:Arteriosclerotic IAVWE significantly reduced downstream collateral flow and affected relevant neurological deficits.It was an independent factor affecting downstream collateral flow and NIHSS scores,which should be a focus of future studies.Trial Registration:ChiCTR.org.cn,ChiCTR2100053661.
文摘缺血性脑卒中的病因分型对临床治疗决策和预后判断有重要价值。近年来,随着高分辨率磁共振血管壁成像(high-resolution vessel wall magnetic resonance imaging,HR-VW-MRI)在脑卒中临床研究和实践中的应用增加,7 T MRI以其更高信噪比和更优图像质量,可发现脑血管早期、细微的病理变化,为深入了解各种脑血管疾病的病理机制提供了新思路。然而,超高场强也存在B1场不均、扫描时间长等技术挑战。本文就7 T HR-VW-MRI在缺血性卒中病因分型及临床应用中的进展进行综述,深入分析7 T HR-VW-MRI在提升临床诊断精确性与指导临床治疗中的潜在价值,为临床实践与科研探索提供参考。