Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
The Caixiashan-Weiquan area is an important ore concentration area in the eastern Tianshan metallogenic belt. Firstly, this paper studies geochemical features of 1564 samples of 1:200000 stream sediments of the Matou...The Caixiashan-Weiquan area is an important ore concentration area in the eastern Tianshan metallogenic belt. Firstly, this paper studies geochemical features of 1564 samples of 1:200000 stream sediments of the Matoutan mapsheet, where the Caixiashan and Weiquan deposits are located. Processing, analysis and explanation of exploration geochemical data play an important role in the procedure of finding the ore, which are related to whether the measured elements content of geochemical samples can effectively guide the work of mineral exploration. As a highly nonlinear dynamical system, the neural network is more analogous to the human brains in terms of principles and features compared with conventional geochemical approaches. It can adapt itself to the environment, sum up laws, complete pattern recognition. Secondly, the authors used the Kohonen neural network to classify all samples based on 10 mineralization elements of stream sediment samples in order to determine possible mineral ores, reduce the scope of ore targets and study indicator elements of the ninth group of samples, which is the mostly closest to the deposit. The results show that the neural network can delineate metallogenic prospective areas and is effective in the discovery of deep geochemical information.展开更多
Remote sensing technique plays an important role in geological prospecting in Altay because of the remote location and steep terrain with mountains. Pegmatite has important implications for metallogenic prospecting as...Remote sensing technique plays an important role in geological prospecting in Altay because of the remote location and steep terrain with mountains. Pegmatite has important implications for metallogenic prospecting as most of rare metals occurs in it. Pegmatite information from optical and radar images was extracted, and the spatial distribution and scale of pegmatite were generalized in Azubai, Altay. Three mining targets, that is, Halon-Azubai, Kuermutu-Tuyibaguo and Zhuolute-Akuoyige, were delineated based on the analysis of pegmatite information, structure interpretation and other geological data.展开更多
Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nib...Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.展开更多
Tuotuo River region(E91°-E93°,N33°-N 35°) is located in southwest Qinghai Province,P.R.China.It lies in one of the most important metallogenic belts in China—Northwest Sanjiang Metallogenic Belt,d...Tuotuo River region(E91°-E93°,N33°-N 35°) is located in southwest Qinghai Province,P.R.China.It lies in one of the most important metallogenic belts in China—Northwest Sanjiang Metallogenic Belt,due to which Tuotuo River region can be of very high metal mineral potential not only in Qinghai Province but also nationwide.In this research,multisource data sets including geological,geochemical,geophysical, and remotely sensed images were integrated for mineral potential analysis with GIS technology.Under the guidance of regional metallogenic features and deposit-forming geologic anomaly theories,evidential layers were obtained from these sets,which展开更多
The newly-discovered Xiyi lead-zinc deposit is a large deposit located in the north central Baoshan block of the southern Sanjiang metallogenic belt section, Southwest China.The surface of the deposit is mainly covere...The newly-discovered Xiyi lead-zinc deposit is a large deposit located in the north central Baoshan block of the southern Sanjiang metallogenic belt section, Southwest China.The surface of the deposit is mainly covered by eluvial-deluvial lateritic layer, without any mineralized outcrops. The main concealed orebody V3 is buffed in the depth of 300-500m. The orebodies are controlled by certain stratigraphic horizons, and most are cut by strata with a high angle, while a few occur along the strata. The direct wall rocks are calcisiltite, calclithite, bioclastic calcarenite,展开更多
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ...The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
Copper resources in China are rich, but imported copper products are still required. Researches on metallogenic regularity of major types of copper deposits by geologists have involved in worldwide classification, sig...Copper resources in China are rich, but imported copper products are still required. Researches on metallogenic regularity of major types of copper deposits by geologists have involved in worldwide classification, significant copper belts, representative copper deposits, etc. Studies on metallogenic regularity of copper deposits in China also have made achievements with a long-term work. Combined with latest exploration advances obtained in recent ten years, this review aims to conclude the achievements of researches on copper metallogenic regularity in China. Based on data of 814 copper deposits and other ore (mineralized) occurrences, ten prediction types of copper deposits have been suggested. Porphyry and skarn copper ores are taken as the key targets. Porphyry copper deposits are the most important one which concentrate in Gangdese, Changdu-Sanjiang, Dexing and East Tianshan. The Cenozoic and Mesozoic are the major metallogenic epochs. Four main metallogenic epochs are been studied based on the copper ore geochronological data including Precambrian Era (Archean and Proterozoic), Paleozoic Era, Mesozoic Era and Cenozoic Era. Based on the study of metallogenic series of ore deposits in China, twenty-seven metallogenic series of copper deposits are proposed. This is suggested to deepen the study of metallogenic regularity of copper ore and provide the theory guide for copper resources prediction in China.展开更多
Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years, significant progress has been made on the process of gold resource exploration. Some large and giant gold ...Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years, significant progress has been made on the process of gold resource exploration. Some large and giant gold deposits were newly found and some important expansions in the main mining regions were also been completed. Studies on metailogenic regularity of gold deposits in China also have made achievements with a long-term work. This review aims to conclude the achievements of research on gold metallogenic regularity in China. Based on the data of about 2000 gold deposits and other ore (mineralized) occurrences, gold deposits in China were classified into five prediction types: gold deposits genetically related to granite-greenstone formation, gold deposits related to sedimentary formation (including the Carlin type and the metamorphosed clastic rock related vein gold deposit), gold deposits genetically related to volcanic rocks (including the continental and marine types), gold deposits genetically related to intrusions (including the porphyry type and the inner intrusion and contact zone related gold deposit), gold deposits of supergenesis (including fracture zone-altered rock gold deposit, placer gold deposit, gossan type gold precise chronology data of gold deposits indicate deposit and soil type gold deposit). Statistics on that there occurred 5 main periods of gold- mineralization in geological history of China. They were Neoarchean to Paleoproterozoic, Meso- Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic. Gold deposits in China mainly formed in the Mesozoic and the Cenozoic. On the studies of the spatial-temporal distribution characteristics of gold deposits, 53 gold-forming belts were delineated in China. The metallogenic regularity of gold deposits was preliminarily summarized and 71 gold metallogenic series were proposed in China. This suggests that it is necceary to deepen the study on metallogenic regularity of gold deposits and to provide the theory guide for the ore-prospecting for gold resources in China.展开更多
The nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large-scale deposits, 14 large-scale deposits, 26 middle- scale deposits, 75 s...The nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large-scale deposits, 14 large-scale deposits, 26 middle- scale deposits, 75 small-scale deposits, and 220 mineralized occurrences. The prediction types of mineral resources of nickel deposits are magmatic type, marine sedimentary type and regolith type. The formation age is from the Neoarchean to the Cenozoic with two peaks in the Neoproterozoic and the late Paleozoic. The nickel deposits formed in the Neoproterozoic are located on the margin of the North China Block and Yangtze Block, and those formed in the late Paleozoic are mainly distributed in the Central Asian Orogenic Belt (CAOB), Emeishan and the Tarim Large Igneous Provinces (LIPs). Magmatic nickel deposits are mainly related with broken-up continental margin, post-collision extension of the orogenic belt and mantle plume. According to different tectonic backgrounds and main characteristics of magmatism, the Ni-Cu-Co-PGE metallogenie series types of ore deposits related with mantle-derived mafic-ultramafic rocks can be divided into 4 subtypes: (1) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the broken-up continental margin, (2) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in mantle plume magmatism, (3) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the subduction of the orogenic belt, and (4) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in post-collision extension of the orogenic belt. We have discussed in this paper the typical characteristics and metaliogenic models for Neoproterozoic Ni-Cu-(PGE) deposits related with broken-up continental margin, Cambrian marine sedimentary Ni-Mo-V deposits related with black shale, early Permian Ni-Cu deposits related with post-collision extension of the orogenic belt, late Permian Ni-Cu-(PGE) deposits related with Large Igneous Provinces (LIPs), and Cenozoic Ni-Au deposits related with regolith. The broken-up continental margin, mantle plume and post-collision extension of the orogenic belt are important ore- forming geological backgrounds, and the discordogenic fault, mafic-ultramafic intrusion, high MgO primitive magma (high-MgO basaltic magma), deep magmatism, sulfur saturation and sulfide segregation are 6 important geological conditions for the magmatic nickel deposits.展开更多
Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting h...Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting huge reserves and large numbers of deposits.However,most of the fluorite deposits are on a small or medium scale.The main fluorite deposits in China were studied in this paper.Their geological features and metallogenic regularity were summarized and compared.Meanwhile,based on their main genetic factors including metallogenic fluid sources and main metallogenic geological processes,they were divided into two groups,namely meso-epithermal deposits and magmatic-hydrothermal deposits.Furthermore,based on the prospecting achievements and research progress obtained in fluorite deposits in recent years,prospecting potential predictions were made for the metallogenic prospect areas and major prospecting areas of fluorite in China.This aims to provide a theoretical basis and direction for future fluorite prospecting in China.展开更多
In accordance with the fracturing and producing mechanism in coalbed methane well, and combining the knowledge of fluid mechanics, linear elastic fracture mechanics, thermal transfer, computing mathematics and softwar...In accordance with the fracturing and producing mechanism in coalbed methane well, and combining the knowledge of fluid mechanics, linear elastic fracture mechanics, thermal transfer, computing mathematics and software engineering, the three-dimensional hydraulic fracture propagating and dynamical production predicting models for coalbed methane well is put forward. The fracture propagation model takes the variation of rock mechanical properties and in-situ stress distribution into consideration. The dynamic performance prediction model takes the gas production mechanism into consideration. With these models, a three-dimensional hydraulic fracturing optimum design software for coalbed methane well is developed, and its practicality and reliability have been proved by ex-ample computation.展开更多
Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some st...Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some structure prediction models have been developed in recent years. In this review, the progress in computational models for RNA structure prediction is introduced and the distinguishing features of many outstanding algorithms are discussed, emphasizing three- dimensional (3D) structure prediction. A promising coarse-grained model for predicting RNA 3D structure, stability and salt effect is also introduced briefly. Finally, we discuss the major challenges in the RNA 3D structure modeling.展开更多
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
The West Mine of the Bayan Obo deposit, located in the northern-central part of Inner Mongolia, China, is enriched in Nb, rare earth elements and iron (Nb-REE-Fe) mineral resources. This paper presents a combined me...The West Mine of the Bayan Obo deposit, located in the northern-central part of Inner Mongolia, China, is enriched in Nb, rare earth elements and iron (Nb-REE-Fe) mineral resources. This paper presents a combined method to explore metallogenic correlation of the Nb-REE-Fe mineralization at the Bayan Obo West Mine. The method integrates factor analysis and Back Propagation (BP) neural network technology into processing and modeling of geological data. In this study, the Nb and REE contents of samples were transformed into discrete values to analyze the correlations among the metallogenic elements. The results show weak mineralization correlations between Nb and REEs. Nb and U are closely related in the geochemical patterns, while Fe is closely related to both Th and Mn. LREEs are an important factor for the mineralization of the Bayan Obo deposit, while Fe and Nb can be considered as the results of passive mineralization. On the basis of a metallogenic correlation analysis, the factors affecting the Fe-REE-Nb mineralization were extracted, and the Nb mineralization model was established by the BP neural network. Based on the BP neural network data computing, the variability of the Nb concentration displays a coupled multi-factor nonlinear relationship, which can be used to reveal the inherent metallogenic elemental regularities and predict the degree of element mineralization enrichment in the mining area.展开更多
A three-dimensional off-lattice protein model with two species of monomers, hydrophobic and hydrophilic, is studied. Enligh- tened by the law of reciprocity among things in the physical world, a heuristic quasi-physic...A three-dimensional off-lattice protein model with two species of monomers, hydrophobic and hydrophilic, is studied. Enligh- tened by the law of reciprocity among things in the physical world, a heuristic quasi-physical algorithm for protein structure prediction problem is put forward. First, by elaborately simulating the movement of the smooth elastic balls in the physical world, the algorithm finds low energy configurations for a given monomer chain. An "off-trap" strategy is then proposed to get out of local minima. Experimental results show promising performance. For all chains with lengths 13≤n ≤55, the proposed algorithm finds states with lower energy than the putative ground states reported in literatures. Furthermore, for chain lengths n = 21, 34, and 55, the algorithm finds new low energy configurations different from those given in literatures.展开更多
Yingqiong basin is a proven hydrocarbon-rich basin in South China Sea. There are a number of large exploration prospects in high temperature and over-pressured formations, especially in Yacheng Block of Qiongdongnan b...Yingqiong basin is a proven hydrocarbon-rich basin in South China Sea. There are a number of large exploration prospects in high temperature and over-pressured formations, especially in Yacheng Block of Qiongdongnan basin and Dongfang District of Yinggehai Basin. Owing to good exploration situation, we have already achieved proven geological reserves over 1000 × 108 m3. In recent years, a few drilled HPHT wells have confirmed that pressure predicted by conventional method was wildly inaccurate. From the view of regional stress, the accuracy of the pressure prediction will be substantially improved. Accurate pressure prediction and three-dimensional pressure modeling which are based on three-dimensional lithology modeling are the cornerstone to achieve exploration breakthrough. In this paper, the use of the triple constraint trend lithology model broke through the traditional method of seismic lithology prediction only by means of impedance threshold value. Compared with actual data and prediction, it confirms that three-dimensional pressure modeling method is reasonable and effective, and has a wide prospect of application.展开更多
Based on the geology and geochemistry of gold-bearing quartz veins in the Jiudian gold deposit of Pingdu,Shandong Province,the geological and geochemical indicators of occurrence of deep-seated ore bodies in the Jiudi...Based on the geology and geochemistry of gold-bearing quartz veins in the Jiudian gold deposit of Pingdu,Shandong Province,the geological and geochemical indicators of occurrence of deep-seated ore bodies in the Jiudian gold deposit have been summarized.Extent occurrence of wide,intensive,varied alteration zones around the gold-bearing quartz veins and continual presence of diorite porphyrite and lamprophyry indicate the probable occurrence of deep-seated ore bodies at depth of gold lodes.As,Sb and Hg belong to the head halo elements, and their anomalies could reveal the probable occurrence of the deep-seated ore bodies below.展开更多
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
基金granted by the basic scientific research fund of Institute of Mineral Resources,Chinese Academy of Geological Sciences(Grant No.K1103)the National Natural Science Foundation of China(Grant No. 41002119)
文摘The Caixiashan-Weiquan area is an important ore concentration area in the eastern Tianshan metallogenic belt. Firstly, this paper studies geochemical features of 1564 samples of 1:200000 stream sediments of the Matoutan mapsheet, where the Caixiashan and Weiquan deposits are located. Processing, analysis and explanation of exploration geochemical data play an important role in the procedure of finding the ore, which are related to whether the measured elements content of geochemical samples can effectively guide the work of mineral exploration. As a highly nonlinear dynamical system, the neural network is more analogous to the human brains in terms of principles and features compared with conventional geochemical approaches. It can adapt itself to the environment, sum up laws, complete pattern recognition. Secondly, the authors used the Kohonen neural network to classify all samples based on 10 mineralization elements of stream sediment samples in order to determine possible mineral ores, reduce the scope of ore targets and study indicator elements of the ninth group of samples, which is the mostly closest to the deposit. The results show that the neural network can delineate metallogenic prospective areas and is effective in the discovery of deep geochemical information.
基金Project(11JJ6029)supported by Natural Science Foundation of Hunan Province,ChinaProject(2011QNZT006)supported by Fundamental Research Funds for the Central Universities,China
文摘Remote sensing technique plays an important role in geological prospecting in Altay because of the remote location and steep terrain with mountains. Pegmatite has important implications for metallogenic prospecting as most of rare metals occurs in it. Pegmatite information from optical and radar images was extracted, and the spatial distribution and scale of pegmatite were generalized in Azubai, Altay. Three mining targets, that is, Halon-Azubai, Kuermutu-Tuyibaguo and Zhuolute-Akuoyige, were delineated based on the analysis of pegmatite information, structure interpretation and other geological data.
基金supported by the National Natural Science Fund of China (41962008)the Talent Team Program of Guizhou Science and Technology Fund (Qianke Pingtairen Caixintang[2021]007)+3 种基金the Geological Exploration Fund Project of Guizhou Province (520000214TLCOG7DGTDRG)the National Natural Science Foundation of China (U1812402)Scientific Research Project of Hubei Geological Bureau (KJ2022-21)the Graduate Research Fund of Guizhou Province (YJSCXJH [2020] 095)。
文摘Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.
文摘Tuotuo River region(E91°-E93°,N33°-N 35°) is located in southwest Qinghai Province,P.R.China.It lies in one of the most important metallogenic belts in China—Northwest Sanjiang Metallogenic Belt,due to which Tuotuo River region can be of very high metal mineral potential not only in Qinghai Province but also nationwide.In this research,multisource data sets including geological,geochemical,geophysical, and remotely sensed images were integrated for mineral potential analysis with GIS technology.Under the guidance of regional metallogenic features and deposit-forming geologic anomaly theories,evidential layers were obtained from these sets,which
文摘The newly-discovered Xiyi lead-zinc deposit is a large deposit located in the north central Baoshan block of the southern Sanjiang metallogenic belt section, Southwest China.The surface of the deposit is mainly covered by eluvial-deluvial lateritic layer, without any mineralized outcrops. The main concealed orebody V3 is buffed in the depth of 300-500m. The orebodies are controlled by certain stratigraphic horizons, and most are cut by strata with a high angle, while a few occur along the strata. The direct wall rocks are calcisiltite, calclithite, bioclastic calcarenite,
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022D01A330)the CNPC (China National Petroleum Corporation)Scientific Research and Technology Development Project (Grant No.2021DJ1501)+1 种基金National Natural Science Foundation Project (No.52274030)“Tianchi Talent”Introduction Plan of Xinjiang Uygur Autonomous Region (2022).
文摘The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金funded by the National Natural Science Fund for Youth(Grant No.41302058)grant from Ministry of Science and Technology of the People’s Republic of China(Grant No.2011YQ05006908)+1 种基金Chinese Geological Survey Grants(Grant No.1212010633903,1212011220369,12120114039601,12120114019401)open funds from MLR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences(Grant No.ZS1103)
文摘Copper resources in China are rich, but imported copper products are still required. Researches on metallogenic regularity of major types of copper deposits by geologists have involved in worldwide classification, significant copper belts, representative copper deposits, etc. Studies on metallogenic regularity of copper deposits in China also have made achievements with a long-term work. Combined with latest exploration advances obtained in recent ten years, this review aims to conclude the achievements of researches on copper metallogenic regularity in China. Based on data of 814 copper deposits and other ore (mineralized) occurrences, ten prediction types of copper deposits have been suggested. Porphyry and skarn copper ores are taken as the key targets. Porphyry copper deposits are the most important one which concentrate in Gangdese, Changdu-Sanjiang, Dexing and East Tianshan. The Cenozoic and Mesozoic are the major metallogenic epochs. Four main metallogenic epochs are been studied based on the copper ore geochronological data including Precambrian Era (Archean and Proterozoic), Paleozoic Era, Mesozoic Era and Cenozoic Era. Based on the study of metallogenic series of ore deposits in China, twenty-seven metallogenic series of copper deposits are proposed. This is suggested to deepen the study of metallogenic regularity of copper ore and provide the theory guide for copper resources prediction in China.
基金supported by the National Natural Science Foundation (Grant No.41202025,41302058)Funds on basic researchs for central public welfare academic institutes (Grant No.K1325 and YK1401)the Chinese Geological Survey Project (No.1212010633903,1212011220369,12120114039601 and 12120114019401)
文摘Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years, significant progress has been made on the process of gold resource exploration. Some large and giant gold deposits were newly found and some important expansions in the main mining regions were also been completed. Studies on metailogenic regularity of gold deposits in China also have made achievements with a long-term work. This review aims to conclude the achievements of research on gold metallogenic regularity in China. Based on the data of about 2000 gold deposits and other ore (mineralized) occurrences, gold deposits in China were classified into five prediction types: gold deposits genetically related to granite-greenstone formation, gold deposits related to sedimentary formation (including the Carlin type and the metamorphosed clastic rock related vein gold deposit), gold deposits genetically related to volcanic rocks (including the continental and marine types), gold deposits genetically related to intrusions (including the porphyry type and the inner intrusion and contact zone related gold deposit), gold deposits of supergenesis (including fracture zone-altered rock gold deposit, placer gold deposit, gossan type gold precise chronology data of gold deposits indicate deposit and soil type gold deposit). Statistics on that there occurred 5 main periods of gold- mineralization in geological history of China. They were Neoarchean to Paleoproterozoic, Meso- Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic. Gold deposits in China mainly formed in the Mesozoic and the Cenozoic. On the studies of the spatial-temporal distribution characteristics of gold deposits, 53 gold-forming belts were delineated in China. The metallogenic regularity of gold deposits was preliminarily summarized and 71 gold metallogenic series were proposed in China. This suggests that it is necceary to deepen the study on metallogenic regularity of gold deposits and to provide the theory guide for the ore-prospecting for gold resources in China.
基金funded by the National Natural Science Fund for Youth (Grant No.41402070,41372101)grant from Chinese Geological Survey Grants (Grant No.1212010633903,1212011220369,12120114039601,1212011121037)open funds from the key laboratory of western mineral resources and geological engineering of ministry of education,Chang’an university (Grant No.310826151138)
文摘The nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large-scale deposits, 14 large-scale deposits, 26 middle- scale deposits, 75 small-scale deposits, and 220 mineralized occurrences. The prediction types of mineral resources of nickel deposits are magmatic type, marine sedimentary type and regolith type. The formation age is from the Neoarchean to the Cenozoic with two peaks in the Neoproterozoic and the late Paleozoic. The nickel deposits formed in the Neoproterozoic are located on the margin of the North China Block and Yangtze Block, and those formed in the late Paleozoic are mainly distributed in the Central Asian Orogenic Belt (CAOB), Emeishan and the Tarim Large Igneous Provinces (LIPs). Magmatic nickel deposits are mainly related with broken-up continental margin, post-collision extension of the orogenic belt and mantle plume. According to different tectonic backgrounds and main characteristics of magmatism, the Ni-Cu-Co-PGE metallogenie series types of ore deposits related with mantle-derived mafic-ultramafic rocks can be divided into 4 subtypes: (1) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the broken-up continental margin, (2) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in mantle plume magmatism, (3) the Ni-Cu-Co- PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in the subduction of the orogenic belt, and (4) the Ni-Cu-Co-PGE metallogenic series subtype of ore deposits related with mantle-derived mafic-ultramafic rocks in post-collision extension of the orogenic belt. We have discussed in this paper the typical characteristics and metaliogenic models for Neoproterozoic Ni-Cu-(PGE) deposits related with broken-up continental margin, Cambrian marine sedimentary Ni-Mo-V deposits related with black shale, early Permian Ni-Cu deposits related with post-collision extension of the orogenic belt, late Permian Ni-Cu-(PGE) deposits related with Large Igneous Provinces (LIPs), and Cenozoic Ni-Au deposits related with regolith. The broken-up continental margin, mantle plume and post-collision extension of the orogenic belt are important ore- forming geological backgrounds, and the discordogenic fault, mafic-ultramafic intrusion, high MgO primitive magma (high-MgO basaltic magma), deep magmatism, sulfur saturation and sulfide segregation are 6 important geological conditions for the magmatic nickel deposits.
基金funded by Geological Survey Program of China Geological Survey(DD20190816,DD20160057,DD20190606).
文摘Fluorite is one of the important mineral raw materials in the industry.In China,it is mainly distributed in the provinces and regions such as Hunan,Zhejiang,Jiangxi,Inner Mongolia,Fujian,and Henan provinces,boasting huge reserves and large numbers of deposits.However,most of the fluorite deposits are on a small or medium scale.The main fluorite deposits in China were studied in this paper.Their geological features and metallogenic regularity were summarized and compared.Meanwhile,based on their main genetic factors including metallogenic fluid sources and main metallogenic geological processes,they were divided into two groups,namely meso-epithermal deposits and magmatic-hydrothermal deposits.Furthermore,based on the prospecting achievements and research progress obtained in fluorite deposits in recent years,prospecting potential predictions were made for the metallogenic prospect areas and major prospecting areas of fluorite in China.This aims to provide a theoretical basis and direction for future fluorite prospecting in China.
文摘In accordance with the fracturing and producing mechanism in coalbed methane well, and combining the knowledge of fluid mechanics, linear elastic fracture mechanics, thermal transfer, computing mathematics and software engineering, the three-dimensional hydraulic fracture propagating and dynamical production predicting models for coalbed methane well is put forward. The fracture propagation model takes the variation of rock mechanical properties and in-situ stress distribution into consideration. The dynamic performance prediction model takes the gas production mechanism into consideration. With these models, a three-dimensional hydraulic fracturing optimum design software for coalbed methane well is developed, and its practicality and reliability have been proved by ex-ample computation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074191,11175132,and 11374234)the National Basic Research Programof China(Grant No.2011CB933600)the Program for New Century Excellent Talents of China(Grant No.NCET 08-0408)
文摘Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some structure prediction models have been developed in recent years. In this review, the progress in computational models for RNA structure prediction is introduced and the distinguishing features of many outstanding algorithms are discussed, emphasizing three- dimensional (3D) structure prediction. A promising coarse-grained model for predicting RNA 3D structure, stability and salt effect is also introduced briefly. Finally, we discuss the major challenges in the RNA 3D structure modeling.
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
基金supported by National Key Research and Development Program(Grant No.2016YFC0501102)National Science and Technology Major Project(Grant No.2016ZX05066-001)
文摘The West Mine of the Bayan Obo deposit, located in the northern-central part of Inner Mongolia, China, is enriched in Nb, rare earth elements and iron (Nb-REE-Fe) mineral resources. This paper presents a combined method to explore metallogenic correlation of the Nb-REE-Fe mineralization at the Bayan Obo West Mine. The method integrates factor analysis and Back Propagation (BP) neural network technology into processing and modeling of geological data. In this study, the Nb and REE contents of samples were transformed into discrete values to analyze the correlations among the metallogenic elements. The results show weak mineralization correlations between Nb and REEs. Nb and U are closely related in the geochemical patterns, while Fe is closely related to both Th and Mn. LREEs are an important factor for the mineralization of the Bayan Obo deposit, while Fe and Nb can be considered as the results of passive mineralization. On the basis of a metallogenic correlation analysis, the factors affecting the Fe-REE-Nb mineralization were extracted, and the Nb mineralization model was established by the BP neural network. Based on the BP neural network data computing, the variability of the Nb concentration displays a coupled multi-factor nonlinear relationship, which can be used to reveal the inherent metallogenic elemental regularities and predict the degree of element mineralization enrichment in the mining area.
基金The National Natural Science Founda-tion of China (No.10471051) and the National Basic Research Program (973) of China (No.2004CB318000)
文摘A three-dimensional off-lattice protein model with two species of monomers, hydrophobic and hydrophilic, is studied. Enligh- tened by the law of reciprocity among things in the physical world, a heuristic quasi-physical algorithm for protein structure prediction problem is put forward. First, by elaborately simulating the movement of the smooth elastic balls in the physical world, the algorithm finds low energy configurations for a given monomer chain. An "off-trap" strategy is then proposed to get out of local minima. Experimental results show promising performance. For all chains with lengths 13≤n ≤55, the proposed algorithm finds states with lower energy than the putative ground states reported in literatures. Furthermore, for chain lengths n = 21, 34, and 55, the algorithm finds new low energy configurations different from those given in literatures.
文摘Yingqiong basin is a proven hydrocarbon-rich basin in South China Sea. There are a number of large exploration prospects in high temperature and over-pressured formations, especially in Yacheng Block of Qiongdongnan basin and Dongfang District of Yinggehai Basin. Owing to good exploration situation, we have already achieved proven geological reserves over 1000 × 108 m3. In recent years, a few drilled HPHT wells have confirmed that pressure predicted by conventional method was wildly inaccurate. From the view of regional stress, the accuracy of the pressure prediction will be substantially improved. Accurate pressure prediction and three-dimensional pressure modeling which are based on three-dimensional lithology modeling are the cornerstone to achieve exploration breakthrough. In this paper, the use of the triple constraint trend lithology model broke through the traditional method of seismic lithology prediction only by means of impedance threshold value. Compared with actual data and prediction, it confirms that three-dimensional pressure modeling method is reasonable and effective, and has a wide prospect of application.
基金Supported by Project of China Geological Survey(No.1212011085480 )Key Scientific and Technological Development Project of Jilin Province (No.20090479)
文摘Based on the geology and geochemistry of gold-bearing quartz veins in the Jiudian gold deposit of Pingdu,Shandong Province,the geological and geochemical indicators of occurrence of deep-seated ore bodies in the Jiudian gold deposit have been summarized.Extent occurrence of wide,intensive,varied alteration zones around the gold-bearing quartz veins and continual presence of diorite porphyrite and lamprophyry indicate the probable occurrence of deep-seated ore bodies at depth of gold lodes.As,Sb and Hg belong to the head halo elements, and their anomalies could reveal the probable occurrence of the deep-seated ore bodies below.