期刊文献+
共找到706篇文章
< 1 2 36 >
每页显示 20 50 100
Numerical Analysis of Interaction Between Pile-Supported Pier and Bank Slope 被引量:5
1
作者 WANG Nianxiang(王年香) 《China Ocean Engineering》 SCIE EI 2001年第1期117-128,共12页
Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is... Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is used. The influence of the combination type of piles on the deformation of bank slope and pile behaviour is analyzed. Different designs of a pile-supported pier are compared thoroughly. Calculation results show that the stresses and displacements of the pile are directly related to the distance from the bank slope and the direction of inclination. An inclined prop pile set in the rear platform would remarkably reduce the stresses of piles and the displacement of the pier. 展开更多
关键词 INTERACTION pile-supported pier bank slope numerical analysis
下载PDF
Three-dimensional analysis of slopes reinforced with piles 被引量:8
2
作者 高玉峰 叶茂 张飞 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2322-2327,共6页
Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of... Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes. 展开更多
关键词 three-dimensional rotational failure mechanism stability of slopes limit analysis LANDSLIDES PILES
下载PDF
A Method Combining Numerical Analysis and Limit Equilibrium Theory to Determine Potential Slip Surfaces in Soil Slopes 被引量:6
3
作者 XIAO Shiguo YAN Liping CHENG Zhiqiang 《Journal of Mountain Science》 SCIE CSCD 2011年第5期718-727,共10页
This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any po... This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any point in a slope is determined using the Coulomb’s strength principle and the extremum principle based on the ratio of the shear strength to the shear stress at that point. The ratio, which is considered as an analysis index, can be computed once the stress field of the soil slope is obtained. The critical slip direction at any point in the slope must be the tangential direction of a potential slip surface passing through the point. Therefore, starting from a point on the top of the slope surface or on the horizontal segment outside the slope toe, the increment with a small distance into the slope is used to choose another point and the corresponding slip direction at the point is computed. Connecting all the points used in the computation forms a potential slip surface exiting at the starting point. Then the factor of safety for any potential slip surface can be computed using limit equilibrium method like Spencer method. After factors of safety for all the potential slip surfaces are obtained, the minimum one is the factor of safety for the slope and the corresponding potential slip surface is the critical slip surface of the slope. The proposed method does not need to pre-assume the shape of potential slip surfaces. Thus it is suitable for any shape of slip surfaces. Moreover the method is very simple to be applied. Examples are presented in this paper to illustrate the feasibility of the proposed method programmed in ANSYS software by macro commands. 展开更多
关键词 Soil slope Stress field Potential slip surface slope stability Factor of safety numerical analysis Limit equilibrium method ANSYS software
下载PDF
Numerical analysis of pile–slope stability and the soil arching around two adjacent piles
4
作者 Chien-Yuan CHEN Chun-Kai CHANG Yu-Shan LIN 《Journal of Mountain Science》 SCIE CSCD 2022年第11期3270-3285,共16页
Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in t... Seismic pile–slope stability analysis and the formation mechanism of soil arching have not been well studied. This study used a threedimensional(3D) finite difference to determine soil and pile parameter changes in the static and seismic stability of the pile–slope caused by the interaction between stabilizing piles. Pile–slope stability analysis was performed to determine the optimal design of piles along a slope and the corresponding failure mode involving the formation of soil arching around two adjacent piles. The Factor of Safety(FS) of the slope was evaluated using the shear strength reduction method for static and seismic analyses. The results of the analysis show that suitable pile spacing(S) and a suitable pile diameter(D) in the middle of a slope result in the maximum FS for the pile–slope system and the formation of soil arching around two adjacent piles. FS of the pile–slope increased negligibly in the seismic analysis of piles located at the slope crest and toe. An optimized pile diameter and installation location afforded the maximum FS for the slope that corresponded to a specified slope failure mode for different pile locations. A pile spacing S ≤ 2.5D for piles installed in the middle of the slope is suggested for increasing the static and seismic pile–slope stability. 展开更多
关键词 numerical modeling slope stability Stabilizing pile Arching effect Seismic analysis Failure mode
下载PDF
Three-Dimensional Finite Element Numerical Simulation and Physical Experiment for Magnetism-Stress Detecting in Oil Casing 被引量:2
5
作者 MENG Fanshun ZHANG Jie +2 位作者 YANG Chaoqun YU Weizhe CHEN Yuxi 《Journal of Ocean University of China》 SCIE CAS 2015年第4期669-674,共6页
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i... The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment. 展开更多
关键词 oil casing damage magnetism-stress detecting magnetic anisotropy finite element analysis physical experiment relative magnetic permeability ANSYS three-dimensional numerical simulation
下载PDF
THEORETICAL STUDY OF THREE-DIMENSIONAL NUMERICAL MANIFOLD METHOD
6
作者 骆少明 张湘伟 +1 位作者 吕文阁 姜东茹 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第9期1126-1131,共6页
The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Ha... The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable. 展开更多
关键词 numerical manifold method three-dimensional analysis finite cover
下载PDF
Rock-soil slope stability analysis by two-phase random media and finite elements 被引量:9
7
作者 Yong Liu Huawen Xiao +2 位作者 Kai Yao Jun Hu Hong Wei 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1649-1655,共7页
To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simul... To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer. 展开更多
关键词 slopeS stability numerical computation STATISTICAL analysis FINITE-ELEMENT modelling Random FIELDS Monte-Carlo simulations
下载PDF
Microseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineering 被引量:6
8
作者 Chun’an Tang Lianchong Li +1 位作者 Nuwen Xu Ke Ma 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第5期493-508,共16页
For high-steep slopes in hydropower engineering, damage can be induced or accumulated due to a seriesof human or natural activities, including excavation, dam construction, earthquake, rainstorm, rapid riseor drop of ... For high-steep slopes in hydropower engineering, damage can be induced or accumulated due to a seriesof human or natural activities, including excavation, dam construction, earthquake, rainstorm, rapid riseor drop of water level in the service lifetime of slopes. According to the concept that the progressivedamage (microseismicity) of rock slope is the essence of the precursor of slope instability, a microseismicmonitoring system for high-steep rock slopes is established. Positioning accuracy of the monitoringsystem is tested by fixed-position blasting method. Based on waveform and cluster analyses of microseismicevents recorded during test, the tempo-spatial distribution of microseismic events is analyzed.The deformation zone in the deep rock masses induced by the microseismic events is preliminarilydelimited. Based on the physical information measured by in situ microseismic monitoring, an evaluationmethod for the dynamic stability of rock slopes is proposed and preliminarily implemented bycombining microseismic monitoring and numerical modeling. Based on the rock mass damage modelobtained by back analysis of microseismic information, the rock mass elements within the microseismicdamage zone are automatically searched by finite element program. Then the stiffness and strengthreductions are performed on these damaged elements accordingly. Attempts are made to establish thecorrelation between microseismic event, strength deterioration and slope dynamic instability, so as toquantitatively evaluate the dynamic stability of slope. The case studies about two practical slopes indicatethat the proposed method can reflect the factor of safety of rock slope more objectively. Numericalanalysis can help to understand the characteristics and modes of the monitored microseismic events inrock slopes. Microseismic monitoring data and simulation results can be used to mutually modify thesensitive rock parameters and calibrate the model. Combination of microseismic monitoring and numericalsimulation provides a more objective basis for the numerical model and parameters and a solidmechanical foundation for the microseismic monitoring. 展开更多
关键词 Rock slope Stability analysis DAMAGE Microseismic monitoring numerical simulation
下载PDF
Probabilistic seismic stability of three-dimensional slopes by pseudo-dynamic approach 被引量:7
9
作者 PAN Qiu-jing QU Xing-ru WANG Xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1687-1695,共9页
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl... Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach. 展开更多
关键词 seismic slope stability pseudo-dynamic analysis probabilistic analysis Monte-Carlo simulation failure probability three-dimensional slop
下载PDF
Coupled hydro-mechanical analysis of slope under rainfall using modified elasto-plastic model for unsaturated soils 被引量:4
10
作者 王柳江 刘斯宏 +1 位作者 傅中志 李卓 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1892-1900,共9页
Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression fo... Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides. 展开更多
关键词 unsaturated soils modified basic Barcelona model(BBM) numerical analysis rainfall infiltration model slope
下载PDF
Stability analysis of cohesive soil embankment slope based on discrete element method 被引量:4
11
作者 XU Guang-ji ZHONG Kun-zhi +2 位作者 FAN Jian-wei ZHU Ya-jing ZHANG Yu-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期1981-1991,共11页
In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of th... In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of the particle micro parameters on the macroscopic characteristics of cohesive soil and calibrate the micro parameters of DEM model on this basis. Embankment slope stability analysis was carried out by strength reduction and gravity increase method, it is shown that the safety factor obtained by strength reduction method is more conservative, and the arc-shaped feature of the sliding surface under the gravity increase method is more obvious. Throughout the progressive failure process, the failure trends, maximum displacements, and velocity changes obtained by the two methods were consistent. When slope was destroyed, the upper part was cracked, the middle part was sheared, and the lower part was destroyed by extrusion. The conclusions of this paper can be applied to the safety factor calculation of cohesive soil slopes and the analysis of the instability process. 展开更多
关键词 embankment slope cohesive soil stability analysis numerical simulation PFC2D software safety factor
下载PDF
3D stability analysis method of concave slope based on the Bishop method 被引量:6
12
作者 Zhang Tianwen Cai Qingxiang +2 位作者 Han Liu Shu Jisen Zhou Wei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期365-370,共6页
In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop metho... In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop method was employed. The sliding body was divided into strips in a three-dimensional model, and the lateral earth pressure was put into mechanical analysis and the three-dimensional stability analysis methods applicable for circular sliding in concave slope were deduced. Based on geometric structure and the geological parameters of a concave slope, the influence rule of curvature radius and the top and bottom arch height on the concave slope stability were analyzed. The results show that the stability coefficient decreases after growth, first in the transition stage of slope shape from flat to concave, and it has been confirmed that there is a best size to make the slope stability factor reach a maximum. By contrast with average slope, the stability of a concave slope features a smaller range of ascension with slope height increase, which indicates that the enhancing effect of a concave slope is apparent only with lower slope heights. 展开更多
关键词 Bishop method Concave slope three-dimensional structure Stability analysis
下载PDF
STRUCTURAL DAMAGE MODEL OF UNSATURATED EXPANSIVE SOIL AND ITS APPLICATION IN MULTI-FIELD COUPLE ANALYSIS ON EXPANSIVE SOIL SLOPE
13
作者 卢再华 陈正汉 +2 位作者 方祥位 郭剑峰 周海清 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第7期891-900,共10页
Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soi... Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained. 展开更多
关键词 unsaturated expansive soil elasto-plastic damage constitutive model CONSOLIDATION soil slope RAINING EVAPORATING numerical analysis
下载PDF
Rock Slope Stability Analysis by Using Integrated Approach
14
作者 Dyson Moses Hideki Shimada +3 位作者 Takashi Sasaoka Akihiro Hamanaka Tumelo K. Dintwe Sugeng Wahyudi 《World Journal of Engineering and Technology》 2020年第3期405-428,共24页
Slope stability assessment is an essential aspect of mining and civil engineering<span style="font-family:;" "=""><span style="font-family:Verdana;">. In this study, Song... Slope stability assessment is an essential aspect of mining and civil engineering<span style="font-family:;" "=""><span style="font-family:Verdana;">. In this study, Songwe open-pit mine in Malawi was investigated to establish possible pit slope instability. In performing the analysis, an integrated approach entailing rock mass characterisation, kinematic and numerical methods were applied. Based on rock mass classification system, Songwe Hill carbonatite rock mass is characterised as a good rock but still it possesses numerous random discontinuities that present a complex challenge in geotechnical engineering. Dip 6.0 software was used in carrying out kinematic analysis based on the attributes of discontinuities. The results show that there is a 16% likelihood of planar failure in the divided slope sections of the planned pit. Thus, slope angle optimisation to 41<span style="white-space:nowrap;">°</span> has been proposed as a counter-measure to minimise the potential risk of planar failure. At the optimised angle, the risk of planar failure could be reduced by 44%. On the other hand, wedge failure was found to be improbable since no joint intersections were found in the critical zone of potential failure. For numerical analysis, finite element code was applied using FLAC</span><sup><span style="font-size:12px;font-family:Verdana;">3D</span></sup><span style="font-family:Verdana;"> 5.0 application. The results demonstrate that </span></span><span style="font-family:Verdana;">overall slope angle of 41<span style="white-space:nowrap;">°</span> would offer a favourable balance between safety and mining economics as mining operations progress to deeper horizons thereby avoiding a </span><span style="font-family:Verdana;">costly push back solution due to instability.</span> 展开更多
关键词 Songwe Hill CARBONATITE Kinematic analysis numerical analysis slope Stability
下载PDF
A Simplified Numerical Approach for the Prediction of Rainfall-Induced Retrogressive Landslides 被引量:3
15
作者 LIN Hungchou YU Yuzhen +2 位作者 LI Guangxin YANG Hua PENG Jianbing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1471-1480,共10页
Retrogressive landslides are common geological phenomena in mountainous areas and on onshore and offshore slopes. The impact of retrogressive landslides is different from that of other landslide types due to the pheno... Retrogressive landslides are common geological phenomena in mountainous areas and on onshore and offshore slopes. The impact of retrogressive landslides is different from that of other landslide types due to the phenomenon of retrogression. The hazards caused by retrogressive landslides may be increased because retrogressive landslides usually affect housing, facilities, and infrastructure located far from the original slopes. Additionally, substantial geomorphic evidence shows that the abundant supply of loose sediment in the source area of a debris flow is usually provided by retrogressive landslides that are triggered by the undercutting of water. Moreover, according to historic case studies, some large landslides are the evolution result of retrogressive landslides. Hence the ability to understand and predict the evolution of retrogressive landslides is crucial for the purpose of hazard mitigation. This paper discusses the phenomenon of a retrogressive landslide by using a model experiment and suggests a reasonably simplified numerical approach for the prediction of rainfall-induced retrogressive landslides. The simplified numerical approach, which combines the finite element method for seepage analysis, the shear strength reduction finite element method, and the analysis criterion for the retrogression and accumulation effect, is presented and used to predict the characteristics of a retrogressive landslide. The results show that this numerical approach is capable of reasonably predicting the characteristics of retrogressive landslides under rainfall infiltration, particularly the magnitude of each landslide, the position of the slip surface, and the development processes of the retrogressive landslide. Therefore, this approach is expected to be a practical method for the mitigation of damage caused by rainfall-induced retrogressive landslides. 展开更多
关键词 retrogressive landslide slope stability landslide prediction model experiment numerical analysis
下载PDF
Optimal Evacuation Scheme Based on Dam-Break Flood Numerical Simulation 被引量:2
16
作者 王晓玲 孙蕊蕊 +1 位作者 周正印 黄凌 《Transactions of Tianjin University》 EI CAS 2011年第6期424-430,共7页
The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to t... The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to the hydraulic information obtained from numerical simulation and selecting principles of evacuation emergency scheme, evacuation route analysis model is proposed, which consists of the road right model and random degree model. The road right model is used to calculate the consumption time in roads, and the random degree model is used to judge whether the roads are blocked. Then the shortest evacuation route is obtained based on Dijstra algorithm. Gongming Reservoir located in Shenzhen is taken as a case to study. The results show that industrial area I is flooded at 2 500 s, and after 5 500 s, most of industrial area II is submerged. The Hushan, Loucun Forest and Chaishan are not flooded around industrial area I and II. Based on the above analysis, the optimal evacuation scheme is determined. 展开更多
关键词 three-dimensional dam-break numerical model volume of fluid method evacuation route analysis model evacuation scheme
下载PDF
Three-dimensional mixed convection stagnation-point fow past a vertical surface with second-order slip velocity
17
作者 A.V.ROSCA N.C.ROSCA I.POP 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期641-652,共12页
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is... This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics. 展开更多
关键词 three-dimensional(3D)mixed convection flow stagnation point flow first-order slip velocity second-order slip velocity numerical solution stability analysis
下载PDF
Three-dimensional numerical manifold method for heat conduction problems with a simplex integral on the boundary
18
作者 TONG DeFu YI XiongWei +2 位作者 TAN Fei JIAO YuYong LIANG JiaWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第4期1007-1022,共16页
The three-dimensional numerical manifold method(3D-NMM),which is based on the derivation of Galerkin's variation,is a powerful calculation tool that uses two cover systems.The 3D-NMM can be used to handle continue... The three-dimensional numerical manifold method(3D-NMM),which is based on the derivation of Galerkin's variation,is a powerful calculation tool that uses two cover systems.The 3D-NMM can be used to handle continue-discontinue problems and extend to THM coupling.In this study,we extended the 3D-NMM to simulate both steady-state and transient heat conduction problems.The modelling was carried out using the raster methods(RSM).For the system equation,a variational method was employed to drive the discrete equations,and the crucial boundary conditions were solved using the penalty method.To solve the boundary integral problem,the face integral of scalar fields and two-dimensional simplex integration were used to accurately describe the integral on polygonal boundaries.Several numerical examples were used to verify the results of 3D steady-state and transient heat-conduction problems.The numerical results indicated that the 3D-NMM is effective for handling 3D both steadystate and transient heat conduction problems with high solution accuracy. 展开更多
关键词 three-dimensional numerical manifold method transient analysis heat conduction problem Galerkin variation simplex integration
原文传递
Mathematical Model,Numerical Simulation and Convergence Analysis of a Semiconductor Device Problem with Heat and Magnetic Influences
19
作者 Chang-feng LI Yi-rang YUAN Huai-ling SONG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第2期302-319,共18页
In this paper,the authors discuss a three-dimensional problem of the semiconductor device type involved its mathematical description,numerical simulation and theoretical analysis.Two important factors,heat and magneti... In this paper,the authors discuss a three-dimensional problem of the semiconductor device type involved its mathematical description,numerical simulation and theoretical analysis.Two important factors,heat and magnetic influences are involved.The mathematical model is formulated by four nonlinear partial differential equations(PDEs),determining four major physical variables.The influences of magnetic fields are supposed to be weak,and the strength is parallel to the z-axis.The elliptic equation is treated by a block-centered method,and the law of conservation is preserved.The computational accuracy is improved one order.Other equations are convection-dominated,thus are approximated by upwind block-centered differences.Upwind difference can eliminate numerical dispersion and nonphysical oscillation.The diffusion is approximated by the block-centered difference,while the convection term is treated by upwind approximation.Furthermore,the unknowns and adjoint functions are computed at the same time.These characters play important roles in numerical computations of conductor device problems.Using the theories of priori analysis such as energy estimates,the principle of duality and mathematical inductions,an optimal estimates result is obtained.Then a composite numerical method is shown for solving this problem. 展开更多
关键词 three-dimensional conductor device problem with heat and magnetic influences upwind blockcentered differences elemental conservation of mass numerical analysis
原文传递
An extension of 2D Janbu's generalized procedure of slices for 3D slope stability analysis Ⅱ--Numerical method and applications 被引量:1
20
作者 ZHANG Junfeng LI Zhengguo QI Tao 《Science China(Technological Sciences)》 SCIE EI CAS 2005年第z1期184-195,共12页
This paper provides a numerical approach on achieving the limit equilibrium method for 3D slope stability analysis proposed in the theoretical part of the previous paper. Some programming techniques are presented to e... This paper provides a numerical approach on achieving the limit equilibrium method for 3D slope stability analysis proposed in the theoretical part of the previous paper. Some programming techniques are presented to ensure the maneuverability of the method. Three examples are introduced to illustrate the use of this method. The results are given in detail such as the local factor of safety and local potential sliding direction for a slope. As the method is an extension of 2D Janbu’s generalized procedure of slices (GPS), the results obtained by GPS for the longitudinal sections of a slope are also given for comparison with the 3D results. A practical landslide in Yunyang, the Three Gorges, of China, is also analyzed by the present method. Moreover, the proposed method has the advantages and disadvantages of GPS. The problem frequently encountered in calculation process is still about the convergency, especially in analyzing the stability of a cutting corner. Some advice on discretization is given to ensure convergence when the present method is used. However, the problem about convergency still needs to be further explored based on the rigorous theoretical background. 展开更多
关键词 slope stability analysis three-dimensional analysis LIMIT equilibrium.
原文传递
上一页 1 2 36 下一页 到第
使用帮助 返回顶部