Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi...Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.展开更多
Direct numerical simulation of coherent structures in the three-dimensional transitional jet with a moderate Reynolds number of 5000 was conducted. The finite volume method was used to discretize the governing equatio...Direct numerical simulation of coherent structures in the three-dimensional transitional jet with a moderate Reynolds number of 5000 was conducted. The finite volume method was used to discretize the governing equations in space; the low-storage, three-order Runge-Kutta scheme was used for time integration. The comparisons between the statistical results of the flow field; the related experimental data were performed to validate the reliability of the present numerical schemes. The emphasis was placed on the study of the spatial evolution of the three-dimensional coherent vortex structures as well as their interactions. It is found that the evolution of the spanwise vortex structures in three-dimensional space is similar to that in two-dimensional jet. The spanwise vortex structures are subject to three-dimensional instability; induce the formation of the streamwise; lateral vortex structures. Going with the breakup; mixing of the spanwise vortex structures, the streamwise; transverse vortex tubes also fall to pieces; the mixing arranged small-scale structures are formed in the flow field. Finally, the arrangement relationship among the spanwise, the streamwise; the lateral vortex structures was analyzed; their interactions were also discussed.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52374078 and 52074043)the Fundamental Research Funds for the Central Universities (No.2023CDJKYJH021)。
文摘Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.
基金Supported by the National Natural Science Foundation of China (Grant No. 50506027)
文摘Direct numerical simulation of coherent structures in the three-dimensional transitional jet with a moderate Reynolds number of 5000 was conducted. The finite volume method was used to discretize the governing equations in space; the low-storage, three-order Runge-Kutta scheme was used for time integration. The comparisons between the statistical results of the flow field; the related experimental data were performed to validate the reliability of the present numerical schemes. The emphasis was placed on the study of the spatial evolution of the three-dimensional coherent vortex structures as well as their interactions. It is found that the evolution of the spanwise vortex structures in three-dimensional space is similar to that in two-dimensional jet. The spanwise vortex structures are subject to three-dimensional instability; induce the formation of the streamwise; lateral vortex structures. Going with the breakup; mixing of the spanwise vortex structures, the streamwise; transverse vortex tubes also fall to pieces; the mixing arranged small-scale structures are formed in the flow field. Finally, the arrangement relationship among the spanwise, the streamwise; the lateral vortex structures was analyzed; their interactions were also discussed.