期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Conversion of Lignin into Porous Carbons for High-Performance Supercapacitors via Spray Drying and KOH Activation: Structure-Properties Relationship and Reaction Mechanism
1
作者 Shihao Feng Qin Ouyang +4 位作者 Jing Huang Xilin Zhang Zhongjun Ma Kun Liang Qing Huang 《Journal of Renewable Materials》 EI CAS 2024年第7期1207-1218,共12页
Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance d... Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors. 展开更多
关键词 LIGNIN porous carbon KOH activation mechanism SUPERCAPACITOR
下载PDF
CoN_(x)C active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs as efficient multifunctional electrocatalyst for rechargeable Zn–air batteries 被引量:7
2
作者 Wenming Zhang Jingjing Chu +2 位作者 Shifeng Li Yanan Li Ling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期323-332,共10页
In this work, a CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs is prepared via a nucleation growth strategy and a pyrolysis process.The mat... In this work, a CoNxC active sites-rich three-dimensional porous carbon nanofibers network derived from bacterial cellulose and bimetal-ZIFs is prepared via a nucleation growth strategy and a pyrolysis process.The material displays excellent electrocatalytic activity for the oxygen reduction reaction, reaching a high limiting diffusion current density of -7.8 mA cm^(-2), outperforming metal–organic frameworks derived multifunctional electrocatalysts, and oxygen evolution reaction and hydrogen evolution reaction with low overpotentials of 380 and 107 mV, respectively. When the electrochemical properties are further evaluated, the electrocatalyst as an air cathode for Zn-air batteries exhibits a high cycling stability for63 h as well as a maximum power density of 308 mW cm^(-2), which is better than those for most Zn-air batteries reported to date. In addition, a power density of 152 mW cm^(-2) is provided by the solid-state Zn-air batteries, and the cycling stability is outstanding for 24 h. The remarkable electrocatalytic properties are attributed to the synergistic effect of the 3 D porous carbon nanofibers network and abundant inserted CoNxC active sites, which enable the fast transmission of ions and mass and simultaneously provide a large contact area for the electrode/electrolyte. 展开更多
关键词 Bacterial cellulose Bimetal-ZIFs CoNxC active sites 3D nitrogen-doped porous carbon nanofiber Zn-air batteries
下载PDF
Electro-enhanced adsorption of As(V)by activated carbon in three-dimensional electrode reactor 被引量:4
3
作者 Yong-jian LUO Yun-yan WANG +4 位作者 Hui XU Jia-li DU Ming-fei ZHU Li-min ZHANG Zhu-mei SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期2080-2090,共11页
This study focused on As(V)removal by electrosorption in a self-made three-dimensional electrode reactor,in which granular activated carbon(GAC)was used as the particle electrode.Under the optimal conditions,the remov... This study focused on As(V)removal by electrosorption in a self-made three-dimensional electrode reactor,in which granular activated carbon(GAC)was used as the particle electrode.Under the optimal conditions,the removal efficiency of As(V)was 84%,and its residual concentration in solution was 0.08 mg/L.From kinetic investigation,the rate determining steps of the entire process may involve more than two processes:membrane diffusion,material diffusion and physical/chemical adsorption processes.During the desorption process,As(V)can be desorbed from GAC,and the GAC was able to electro-adsorb As(V)again after desorption,which means that the electrode has good cycling performance. 展开更多
关键词 arsenic removal activated carbon ELECTROSORPTION three-dimensional electrode reactor
下载PDF
Preparation and Characterization of Three-dimensional Photocatalyst——TiO_2 Particulate Film Immobilized on Activated Carbon Fibers 被引量:1
4
作者 傅平丰 栾勇 +2 位作者 戴学刚 张建强 张安华 《过程工程学报》 EI CAS CSCD 北大核心 2006年第3期482-486,共5页
关键词 liquid phase deposition TiO2 particulate film activated carbon fibers three-dimensional structure photocatalytic activity
下载PDF
Preparation and Electrochemical Performance Study of Catalytic Cracking Oil Slurry-based Porous Carbon Materials
5
作者 Liu Qi Zhao Gaiju +3 位作者 Liu Xingge Yu Hewei Sun Rongfeng Geng Wenguang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期34-45,共12页
Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industr... Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries. 展开更多
关键词 catalytic cracking slurry porous carbon SUPERCAPACITOR KOH activation
下载PDF
Effects of Microporous Structure of Activated Carbon on Adsorption Performance of N-butane
6
作者 刘晓敏 邓先伦 +1 位作者 朱光真 王国栋 《Agricultural Science & Technology》 CAS 2012年第1期13-16,92,共5页
[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologi... [Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologies, the effects of physical prop- erties of activated carbon on butane adsorption performance were investigated. [Result] Specific surface area, pore volume and pore size distribution of activated carbon exert- ed remarkable effects on butane adsorption. The activated carbon with high percent- age of micropore volume within the range of 1.2-2 nm possessed high butane activity. The level of butane retentivity rose with the increase of the volume of pore within the range of 0.5-0,9 nm, which led to smaller butan working capacity (BWC). [Conclusion] The study provided reference for the adsorption research for activated carbon. 展开更多
关键词 activated carbon BWC Micro'porous structure Adsorption mechanism
下载PDF
Controlled-Release of Plant Volatiles:New Composite Materials of Porous Carbon-Citral and Their Fungicidal Activity against Exobasidium vexans 被引量:1
7
作者 Yaoguo Liu Yao Chen +5 位作者 Huifang Liu Wei Chen Zhiwei Lei Chiyu Ma Jie Yin Wen Yang 《Journal of Renewable Materials》 SCIE EI 2023年第2期811-823,共13页
Citral(Eo)exhibits excellent fungicidal activities.However,it is difficult to maintain long-term fungicidal activity due to its strong volatility.Herein,a controlled-release strategy by using biomass-derived porous ca... Citral(Eo)exhibits excellent fungicidal activities.However,it is difficult to maintain long-term fungicidal activity due to its strong volatility.Herein,a controlled-release strategy by using biomass-derived porous carbon(BC)was developed to overcome the drawback of Eo.New composite materials were prepared by loading Eo on tea stem porous carbon(BC@Eo),and their controlled-release fungicidal activity against Exobasidium vexans was assessed.BC with a large specific surface area of 1001.6 m2/g and mesoporous structure was fabricated through carbonization tempera-ture of 700℃.The BC@Eo materials were characterized using Fourier-transform infrared spectroscopy and X-ray powder diffraction.The results suggested that chemical and physical interactions occurred in BC@Eo.The Eo release profile suggested a biphasic pattern with an initial fast release on days 1–14 and a subsequent controlled phase on days 14–30.The in vitro cumulative release percentage of Eo from BC@Eo was 51%during one month,and this result was significantly lower than that from free Eo(cumulative release percentage of Eo of 82%in one week).The anti-fungal activities of Eo and BC@Eo against E.vexans were determined using the inhibition zone method.The results indicated that Eo and BC@Eo formed large inhibition zones of 19.66±0.79 and 21.92±0.77 mm,respectively.The influence on the hyphal structure of E.vexans was observed by scanning electron microscopy on day 30.The hyphal structure of E.vexans treated with BC@Eo was more shrunken than that treated with Eo at 30 days,suggesting that BC@Eo prolongs the fungicidal activity against E.vexans.This study demonstrated that the encapsulation of Eo in BC for developing the BC@Eo materials could be a promising strategy to inhibit volatility and maintain the fungicidal activity of Eo and provide a potential alternative for the reuse of abundant tea biomass waste resources. 展开更多
关键词 Exobasidium vexans porous carbon CITRAL controlled release fungicidal activity
下载PDF
In-situ formation of cobalt phosphide nanoparticles confined in three-dimensional porous carbon for high-performing zinc-air battery and water splitting
8
作者 Xinxin Shu Maomao Yang +2 位作者 Miaomiao Liu Huaisheng Wang Jintao Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第12期3107-3115,共9页
The rational design of efficient and stable carbon-based electrocatalysts for oxygen reduction and oxygen evolution reactions is crucial for improving energy density and long-term stability of rechargeable zinc-air ba... The rational design of efficient and stable carbon-based electrocatalysts for oxygen reduction and oxygen evolution reactions is crucial for improving energy density and long-term stability of rechargeable zinc-air batteries(ZABs).Herein,a general and controllable synthesis method was developed to prepare three-dimensional(3D)porous carbon composites embedded with diverse metal phosphide nanocrystallites by interfacial coordination of transition metal ions with phytic acid-doped polyaniline networks and subsequent pyrolysis.Phytic acid as the dopant of polyaniline provides favorable anchoring sites for metal ions owing to the coordination interaction.Specifically,adjusting the concentration of adsorbed cobalt ions can achieve the phase regulation of transition metal phosphides.Thus,with abundant cobalt phosphide nanoparticles and nitrogen-and phosphorus-doping sites,the obtained carbon-based electrocatalysts exhibited efficient electrocatalytic activities toward oxygen reduction and evolution reactions.Consequently,the fabricated ZABs exhibited a high energy density,high power density of 368 mW cm^(-2),and good cycling/mechanical stability,which could power water splitting for integrated device fabrication with high gas yields. 展开更多
关键词 Cobalt phosphide three-dimensional porous carbon ELECTROCATALYSIS Zinc-air battery Water splitting
下载PDF
Optimization of Fixed-Bed Design for Natural Gas Mercury Removal by Sulfur Doped into Porous Activated Carbon
9
作者 Delphine Mukamurara Xuewu Liu +3 位作者 Shuhua Chen Shangshang Ren Jean Claude Munyemana Jiupeng Zou 《Journal of Materials Science and Chemical Engineering》 2019年第2期13-25,共13页
The present work reports the synthesis and application of sulfur doped into porous activated carbon for removing elemental mercury from natural gas using a bench-scale fixed-bed reactor. A series of experiments were c... The present work reports the synthesis and application of sulfur doped into porous activated carbon for removing elemental mercury from natural gas using a bench-scale fixed-bed reactor. A series of experiments were carried out to investigate the optimization of Hg0 capture. Furthermore, our experimental results about optimum conditions to remove Hg0 were 1:10 of sulfur to activated carbon impregnation ratio, 350&#176;C of impregnation temperature, and 3 hours of impregnation time. This research showed that the prepared adsorbents were capable to remove remarkable amount of Hg0 (23.615 mg/g) at high adsorption efficiency. This study may serve as reference on natural gas power plants for the removal of Hg0 using the same conditions. 展开更多
关键词 porous activated carbon Mercury Adsorption Mechanism Natural Gas ELEMENTAL SULFUR IMPREGNATION
下载PDF
Regeneration of activated carbon adsorbed EDTA by electrochemical method 被引量:7
10
作者 尤翔宇 柴立元 +3 位作者 王云燕 苏艳蓉 赵娜 舒余德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期855-860,共6页
Activated carbon after saturated adsorption of EDTA was used as particle electrode in a three-dimensional electrode reactor to treat EDTA-containing wastewater.Electrochemical method was used to regenerate activated c... Activated carbon after saturated adsorption of EDTA was used as particle electrode in a three-dimensional electrode reactor to treat EDTA-containing wastewater.Electrochemical method was used to regenerate activated carbon after many times of electrolysis.Based on the analysis of infrared spectra of activated carbon after adsorption and repeated electrolysis,EDTA was degraded into glycine,and then non-catalytic activated associated complex was formed with N—H bond on the activated carbon.The catalytic ability of the activated carbon vanished and the EDTA degradation efficiency was dropped.Activated carbon could be effectively regenerated by electrochemical method in the three-dimensional reactor.Effects of electric current,conductivity and pH on activated carbon regeneration were investigated,and the optimum conditions were concluded as follows:100-300 mA of current intensity,1.39 mS/cm of electric conductivity,60 min of electrolysis time and pH 6.0-8.0.Under the optimized conditions,the activity of the activated carbon can be recovered and the residual total organic carbon(TOC) was below 10 mg/L(the initial TOC was 200 mg/L) in the three-dimensional electrode reactor. 展开更多
关键词 activated carbon electrochemical regeneration three-dimensional electrode EDTA
下载PDF
Biomass Straw Based Activated Porous Carbon Materials for High-Performance Supercapacitors
11
作者 Mengdie GUAN Xinle ZHANG +4 位作者 Yingping WU Qihao SUN Dongqi DONG Xiaoling ZHANG Jie WANG 《Research and Application of Materials Science》 2019年第2期27-30,共4页
Biomass straws are often regarding as agricultural waste, usually burned off in rural areas, which results in severe resource waste andair pollution. In this work, biomass-based porous carbon material with a lamellar ... Biomass straws are often regarding as agricultural waste, usually burned off in rural areas, which results in severe resource waste andair pollution. In this work, biomass-based porous carbon material with a lamellar microstructure is obtained via simple hydrothermaland subsequent KOH activation, the optimum activate process is determined by the proportion of activator. Scanning electronmicroscopy (SEM) and nitrogen adsorption techniques are conducted to investigate the physical properties of the materials. Cyclicvoltammetry and constant current discharge/charge in the three-electrode system and symmetrical double-layer capacitors resultsindicate the best electrochemical performance of SCA-1.5 electrode material, with a capacity of 250.0 F g-1 at 1.0 A g-1. And notably,high recycling stability at a high cycling rate of 1.0 A g-1 after 18,000 cycles. 展开更多
关键词 STRAW biomass carbon activation porous LAMELLAR structure SUPERCAPACITOR
下载PDF
KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor 被引量:5
12
作者 ChaitraK Vinny R T +6 位作者 Sivaraman P Narendra Reddy Chunyan Hu Krishna Venkatesh Vivek C S Nagaraju N Kathyayini N 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第1期56-62,共7页
Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with ss-Ni(OH)(2)/MWCNTs as positive electrode and KOH activated honeycomb-like ... Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with ss-Ni(OH)(2)/MWCNTs as positive electrode and KOH activated honeycomb-like porous carbon (K-PC) derived from banana fibers as negative electrode. Initially, the electrochemical performance of hydrothermally synthesized ss-Ni(OH)(2)/MWCNTs nanocomposite and K-PC was studied in a three-electrode system using 1 M KOH. These materials exhibited a specific capacitance (Cs) of 1327 Fig and 324 F/g respectively at a scan rate of 10 mV/s. Further, the AS device i.e., ss-Ni(OH)(2)/MWCNTs// K-PC in 1 M KOH solution, demonstrated a Cs of 156 F/g at scan rate of 10 mV/s in a broad cell voltage of 0-2.2 V. The device demonstrated a good rate capability by maintaining a Cs of 59 F/g even at high current density (25 A/g). The device also offered high energy density of 63 Wh/kg with maximum power density of 5.2 kW/kg. The AS device exhibited excellent cycle life with 100% capacitance retention at 5000th cycle at a high current density of 25 A/g. Two AS devices connected in series were employed for powering a pair of LEDs of different colors and also a mini fan. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 Asymmetric supercapacitor device activated porous carbon High energy density CYCLABILITY Power source
下载PDF
STUDY ON THE PROPERTIES OF DIFFERENT ACTIVATED CARBON FIBERS AND THEIR ADSORPTION CHARACTERISTICS FOR FORMALDEHYDE 被引量:2
13
作者 H.Q. Rong, Z.Y. Ryu and J.T. Zheng (Institute of Coal Chemistry, The Chinese Academy of Sciences, P.O.Box 165, Taiyuan 030001, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第6期467-472,共6页
Porous structure and surface chemistry of activated carbon fibers obtained by differ-ent precursors and activation methods were investigated. Adsorption isotherms werecharacterized by nitrogen adsorption at 77K over a... Porous structure and surface chemistry of activated carbon fibers obtained by differ-ent precursors and activation methods were investigated. Adsorption isotherms werecharacterized by nitrogen adsorption at 77K over a relative pressure range from 10 6to 1. The regularization method according to Density Functional Theory (DFT) wasemployed to calculate the pore size distribution in the samples. Their specific surfaceareas were calculated by BET method, micropore volume and microporous specificsurface area calculated by t-plot method and MPD by Horvath-Kawazoe equation. Mi-cropore volume of rayon-based ACF was higher than that of other samples. The staticand dynamic adsorption capacity for formaldehyde on different ACFs was determined.The results show that steam activated Rayon-based A CFs had higher adsorption capac-ity than that of steam and KOH activated PAN-A CFs. Breakthrough curves illustratedthat Rayon-ACFs had longer breakthrough time, thus they possessed higher adsorp-tion capacity for formaldehyde than that of PAN-ACFs. The entire sample had smalladsorption capacity and short breakthrough time for water. Rayon-A CFs had exccl-lent adsorption selectivity for formaldehyde than PAN-ACFs. And the samples withhigh surface areas had relatively high adsorption capacity for formaldehyde. Elementaicontent of different A CFs were performed. Rayon-based A CFs contained more oxygenthan PAN-ACFs, which may be attributed to their excellent adsorption capacity forformaldehyde. 展开更多
关键词 activated carbon fiber porous structure surface chemistry formaldehyde adsorption characteristic
下载PDF
Fibrous TiO_2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption,hydrolysis and calcinations 被引量:2
14
作者 Hui-na YANG Li-fen LIU +1 位作者 Feng-lin YANG Jimmy C. YU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期981-987,共7页
TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (A... TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron micros- copy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysis The pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m^2/g and 148 m^2/g for samples deposited at 100 ℃ and 200℃ (using ACFI700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds. 展开更多
关键词 Chemical vapor deposition (CVD) porous material activated carbon fiber (ACF)
下载PDF
Porous Carbon from Corn Flour Prepared by H<sub>3</sub>PO<sub>4</sub>Carbonization Combined with KOH Activation for Supercapacitors 被引量:1
15
作者 Xinyang Li Guojiang Wu 《Journal of Power and Energy Engineering》 2021年第8期18-25,共8页
<span style="font-family:Verdana;">Hierarchical porous activated carbon is a superior material in manufacturing supercapacitors. However, the hierarchical porous structure is hard to obtain from a sing... <span style="font-family:Verdana;">Hierarchical porous activated carbon is a superior material in manufacturing supercapacitors. However, the hierarchical porous structure is hard to obtain from a single activation method. This work was carried out with the anticipa</span><span style="font-family:Verdana;">tion</span><span style="font-family:Verdana;"> of producing activated carbon by reactivating corn flour with KOH. By em</span><span style="font-family:Verdana;">ploying the electrodes, the supercapacitor demonstrated a high discharge capacitance (151.2 F<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#183</span>g<sup>-1</sup> at 1 A<span style="font-family:Verdana;white-space:normal;"><span style="font-family:" font-size:13.3333px;white-space:normal;"=""><span class="color-dim" style="box-sizing:border-box;color:#636363;font-family:Montserrat, system-ui, -apple-system, BlinkMacSystemFont, " font-size:40px;text-align:center;white-space:normal;background-color:#ffffff;"=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#183</span></span><span style="color:#191E3F;font-family:Montserrat, system-ui, -apple-system, BlinkMacSystemFont, " font-size:40px;text-align:center;white-space:normal;background-color:#ffffff;"=""></span></span></span>g<span style="font-family:Verdana;font-size:10px;white-space:normal;"><sup>-1</sup></span>), and the specific capacitance is with 3.7 times </span><span style="font-family:Verdana;">more capacitance than the activated carbon only through H<sub></sub></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub>3</sub></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">PO<sub></sub></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><sub>4</sub></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> activation. T</span></span></span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">he </span><span style="font-family:Verdana;">mechanism of improving the electrical performance has been discussed th</span><span style="font-family:Verdana;">rough </span><span style="font-family:Verdana;">performing SEM, XRD, EIS, and Raman analysis. The hierarchical porous a</span><span style="font-family:Verdana;">nd disordered structure emerge smaller charge transfer resistance, and fast electron transfer.</span></span></span> 展开更多
关键词 activated carbon Hierarchical porous Reactivating Corn Flour SUPERCAPACITORS
下载PDF
Egg shell waste as an activation agent for the manufacture of porous carbon
16
作者 Yawei Shi Guozhu Liu +1 位作者 Mingde Li Liang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期896-900,共5页
Egg shell waste was used as an activation agent directly for the manufacture of a biomass-derived porous carbon,which possessed a surface area of 626 m2·g-1 and was rich in nitrogen,sulfur and oxygen functionalit... Egg shell waste was used as an activation agent directly for the manufacture of a biomass-derived porous carbon,which possessed a surface area of 626 m2·g-1 and was rich in nitrogen,sulfur and oxygen functionalities.The activation mechanism was proposed,and the carbon showed its potential to act as an adsorbent for the adsorptive removal of various contaminants from both aqueous and non-aqueous solutions,possessing maximum adsorption capacities of 195.9,185.1,125.5 and 44.6 mg·g-1 for sulfamethoxazole,methyl orange,diclofenac sodium and dibenzothiophene,respectively.Through the utilization of egg shell waste as a sustainable activation agent,this work may help to make the widely applied biomass-derived porous carbons more economical and ecological. 展开更多
关键词 carbon materials porous materials Egg shell activation agent BIOMASS
下载PDF
Preparation of Activated Carbons from Mongolian Lignite and Sub-Bituminous Coal by a Physical Method
17
作者 Uugantsetseg Gombojav Irekhbayar Jambal Enkhsaruul Byambajav 《Journal of Minerals and Materials Characterization and Engineering》 2020年第3期97-106,共10页
Preparation of activated carbons by a physical activation technique is performed using the methods of coal pyrolysis and gasification at different temperatures. As increasing pyrolysis temperature from 520&#176;C ... Preparation of activated carbons by a physical activation technique is performed using the methods of coal pyrolysis and gasification at different temperatures. As increasing pyrolysis temperature from 520&#176;C to 700&#176;C, the yield of activated carbons from the Khuut (KH) sub-bituminous coal is lowered, and amount of micropores increases gradually;however there is no development of mesopores by the KH coal pyrolysis. When the KH coal has a small loss during its physical activation due to difficulty and inactivity of its macrostructure decomposition, the smaller porosity is developed in the resulting carbons. The Aduunchuluun (AD) lignite is activated by pyrolysis and gasification at the highest temperature of 700&#176;C in the present study. It is identified that the gasification of AD lignite develops well a porous structure with the highest surface area of 522 m2/g which is three times larger than that (155 m2/g) of the activated carbon produced by pyrolysis of the same lignite. The IR and SEM analysis confirm a significant difference in chemical and structural changes between the AD, KH raw coals and corresponding carbon samples in the physical activation processes. 展开更多
关键词 COAL-BASED activated carbon porous Structure Physical activation MICROPORES MESOPORES
下载PDF
Adsorption of phenol from aqueous solution by a hierarchical micro-nano porous carbon material 被引量:4
18
作者 Liu Chengbao Chen Zhigang +5 位作者 Ni Chaoying Chen Feng Gu Cheng Cao Yu Wu Zhengying Li Ping 《Rare Metals》 SCIE EI CAS CSCD 2012年第6期582-589,共8页
A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidificatio... A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution. 展开更多
关键词 micro-nano porous carbon materials expanded graphite activated carbon phenol adsorption KINETICS
下载PDF
Construction of efficient active sites through cyano‐modified graphitic carbon nitride for photocatalytic CO_(2) reduction 被引量:4
19
作者 Fang Li Xiaoyang Yue +2 位作者 Haiping Zhou Jiajie Fan Quanjun Xiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1608-1616,共9页
The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits ... The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits moderate photocatalytic activity due to insufficient active sites.In this study,cyano‐modified porous g‐C_(3)N_(4)nanosheets(MCN‐0.5)were synthesized through molecular self‐assembly and alkali‐assisted strategies.The cyano group acted as the active site of the photocatalytic reaction,because the good electron‐withdrawing property of the cyano group promoted carrier separation.Benefiting from the effect of the active sites,MCN‐0.5 exhibited significantly enhanced photocatalytic activity for CO2 reduction under visible light irradiation.Notably,the photocatalytic activity of MCN‐0.5 was significantly reduced when the cyano groups were removed by hydrochloric acid(HCl)treatment,further verifying the role of cyano groups as active sites.The photoreduction of Pt nanoparticles provided an intuitive indication that the introduction of cyano groups provided more active sites for the photocatalytic reaction.Furthermore,the controlled experiments showed that g‐C_(3)N_(4)grafted with cyano groups using melamine as the precursor exhibited enhanced photocatalytic activity,which proved the versatility of the strategy for enhancing the activity of g‐C_(3)N_(4)via cyano group modification.In situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations were used to investigate the mechanism of enhanced photocatalytic activity for CO2 reduction by cyano‐modified g‐C_(3)N_(4).This work provides a promising route for promoting efficient solar energy conversion by designing active sites in photocatalysts. 展开更多
关键词 Graphitic carbon nitride Cyano group modification active sites Electron acceptor porous structure Photocatalytic CO2 reduction
下载PDF
Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO_(2) under mild conditions 被引量:3
20
作者 Zhifeng Dai Yongquan Tang +7 位作者 Fei Zhang Yubing Xiong Sai Wang Qi Sun Liang Wang Xiangju Meng Leihong Zhao Feng-Shou Xiao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期618-626,共9页
The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for t... The transformation of CO_(2)into cyclic carbonates via atom-economical cycloadditions with epoxides has recently attracted tremendous attention.On one hand,though many heterogeneous catalysts have been developed for this reaction,they typically suffer from disadvantages such as the need for severe reaction conditions,catalyst loss,and large amounts of soluble co-catalysts.On the other hand,the development of heterogeneous catalysts featuring multiple and cooperative active sites,remains challenging and desirable.In this study,we prepared a series of porous organic catalysts(POP-PBnCl-TPPMg-x)via the copolymerization metal-porphyrin compounds and phosphonium salt monomers in various ratios.The resulting materials contain both Lewis-acidic and Lewis-basic active sites.The molecular-level combination of these sites in the same polymer allows these active sites to work synergistically,giving rise to excellent performance in the cycloaddition reaction of CO_(2)with epoxides,under mild conditions(40℃ and 1 atm CO_(2))in the absence of soluble co-catalysts.POP-PBnCl-TPPMg-12 can also efficiently fixate CO_(2)under low-CO_(2)-concentration(15%v/v N2)conditions representative of typical CO_(2)compositions in industrial exhaust gases.More importantly,this catalyst shows excellent recyclability and can easily be separated and reused at least five times while maintaining its activity.In view of their heterogeneous nature and excellent catalytic performance,the obtained catalysts are promising candidates for the transformation of industrially generated CO_(2)into high value-added chemicals. 展开更多
关键词 COPOLYMERIZATION porous organic polymers Binary active sites carbon dioxide fixation Heterogeneous catalysis
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部