In order to explore the characteristics of the three-dimensional surface morphology of sawn timber,a three-dimensional wood surface morphology tester based on the scanning probe method and the principle of atomic forc...In order to explore the characteristics of the three-dimensional surface morphology of sawn timber,a three-dimensional wood surface morphology tester based on the scanning probe method and the principle of atomic force microscope was used to test the three-dimensional sur face morphology of three kinds of sawn timber and calculate its surface roughness.This study also analyzed the reasonable plan for the value of wood surface roughness and the advantages of the three dimensional shape tester,as well as the influence of tree species,three sections,air dry density and other factors on the surface roughness of the specimen after mechanical processing.The results have shown that it is a more appropriate method to select the calculated values of S。and Sq as the evaluation of the surface roughness of wood with random surface characteristics.The three dimensional wood surface topo-graphy tester can efficiently,conveniently and accurately display the three dimensional topography of wood at a micron-level resolution,and is characterized by high eficiency and good durability.The three dimensional surface morphology characteristics of the three sawn woods correspond to their roughness.The surface roughness of woods is arranged as follows:Sitka spruce>Larch>Beech.For the same tree species,the roughness of the corresponding section after sawing is as follows:chordwise section>crosswise section>radial section.The radial section has lower roughness than the other surfaces.The surface roughness of the wood after sawing is mainly related to its air-dry density.The above is intended to provide a useful reference for the application of measuring and evaluating the surface roughness of sawn timber using the three dimensional surface topography test method.展开更多
This paper illuminates the preparation of grating-like polystyrene latex monolayer structure, which can minimize the effects of the size deviation of spheres and the defect transfer on the accuracy as calibration samp...This paper illuminates the preparation of grating-like polystyrene latex monolayer structure, which can minimize the effects of the size deviation of spheres and the defect transfer on the accuracy as calibration samples for micro-scopes. The latex films are grown on freshly cleaved mica substrates by vertical deposition method. The concentration dependence of the structure and the topography of latex films is characterized by optical microscope, ultraviolet- visible transmission spectrum and scanning probe microscope. The origination of such a grating-like structure is also discussed.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region...Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region.However,the structure-property correlation of the interface remains unestablished,and thus,the design of ferroelectric polymer nanocompos-ite has largely relied on the trial-and-error method.Here,a strategy that combines multi-mode scanning probe microscopy-based electrical charac-terization and nano-infrared spectroscopy is developed to unveil the local structure-property correlation of the interface in ferroelectric polymer nano-composites.The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nano-particles.The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer.It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength.展开更多
Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyze...Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.展开更多
Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser sca...Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser scanning technology.Based on the practical application,this paper puts forward the discussion of related problems and matters needing attention.This has a certain reference significance for the study of new technology in surveying and mapping of ancient buildings.展开更多
The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/...The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/L NaC1 + 0.01 mol/L Na2S203 solution under slow-strain-rate-testing (SSRT) conditions. Moreover, the characteristics of L-crack's surface morphology and potential distribution with scanning Kelvin probe (SKP) before and after SSRT were also discussed. Compared with S-crack, L-crack is propagated and the features of crack propagation can be obtained. After propagation, the noise amplitudes increase with increasing stress and accelerating corrosion, the white noises at low and high frequencies (WE and WH) of the later stage are one order of magnitude larger than that at early stage in the current power spectral densities (PSDs). The potential PSDs also increase, but WH disappears. In addition, the crack propagation can be demonstrated according to variation of probability distribution, surface morphology and potential distribution.展开更多
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modul...Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.展开更多
This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing...This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing.The 3DP resin is used to create transparent specimens to reproduce the surface morphology of a natural joint precisely.The freezing method is employed to enhance the mechanical properties of the 3DP specimens to reproduce the properties of hard rock more accurately.A video camera containing a charge-coupled device(CCD)camera is utilized to record the evolution of damaged area of joint surface during the direct shear test.The optimal shooting distance and shooting angle are recommended to be 800 mm and 40?,respectively.The images captured by the CCD camera are corrected to quantitatively describe the damaged area on the joint surface.Verification indicates that this method can accurately describe the total sheared areas at different shear stages.These findings may contribute to elucidating the shear behavior of rock joints.展开更多
This paper introduces the use of STM, AFM and SEM for detection of the mirror-like surface texture andfeatures of hard metals machined by ELID grinding, analyses causes for different measurements of the same surtacean...This paper introduces the use of STM, AFM and SEM for detection of the mirror-like surface texture andfeatures of hard metals machined by ELID grinding, analyses causes for different measurements of the same surtaceand peesents the preliminary analysis of the mirror-like surface formation by ELID grinding.展开更多
An ultra-high vacuum (UHV) compatible electron spectrometer employing a double toroidal analyzer has been de- veloped. It is designed to be combined with a custom-made scanning tunneling microscope (STM) to study ...An ultra-high vacuum (UHV) compatible electron spectrometer employing a double toroidal analyzer has been de- veloped. It is designed to be combined with a custom-made scanning tunneling microscope (STM) to study the spatially localized electron energy spectrum on a surface. A tip-sample system composed of a piezo-driven field-emission tungsten tip and a sample of highly ordered pyrolytic graphite (HOPG) is employed to test the performance of the spectrometer. Two-dimensional images of the energy-resolved and angle-dispersed electrons backscattered from the surface of HOPG are obtained, the performance is optimized and the spectrometer is calibrated. A complete electron energy loss spectrum covering the elastic peak to the secondary electron peaks for the HOPG surface, acquired at a tip voltage of -140 V and a sample current of 0.5 pA, is presented, demonstrating the viability of the spectrometer.展开更多
The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmos...The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmosphere environment. The localized corrosion was accurately characterized by SKP in both coated and uncoated regions. The SKP results showed that Volta potential varied with the test time, and the more the corrosion products, the more positive the potential. The borderline between coated and uncoated regions of partly coated steel shifted towards the coated side with the increasing of test time. The coating disbonding rate could be determined according to the shift of potential borderline measured by SKP. The corrosion mechanism of partly coated steel in NaCl salt spray was discussed according to the potential maps and corrosion morphologies.展开更多
Cost effective patterning based on scanning probe nanolithography(SPL)has the potential for electronic and optical nano-device manufacturing and other nanotechnological applications.One of the fundamental advantages o...Cost effective patterning based on scanning probe nanolithography(SPL)has the potential for electronic and optical nano-device manufacturing and other nanotechnological applications.One of the fundamental advantages of SPL is its capability for patterning and imaging employing the same probe.This is achieved with self-sensing and self-actuating cantilevers,also known as‘active'cantilevers.Here we used active cantilevers to demonstrate a novel path towards single digit nanoscale patterning by employing a low energy(<100 eV)electron exposure to thin films of molecular resist.By tuning the electron energies to the lithographically relevant chemical resist transformations,the interaction volumes can be highly localized.This method allows for greater control over spatially confined lithography and enhances sensitivity.We found that at low electron energies,the exposure in ambient conditions required approximately 10 electrons per single calixarene molecule to induce a crosslinking event.The sensitivity was 80-times greater than a classical electron beam exposure at 30 keV.By operating the electro-exposure process in ambient conditions a novel lithographic reaction scheme based on a direct ablation of resist material(positive tone)is presented.展开更多
The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such...The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such as scanning tunneling microscopy(STM) due to the superposition of electronic states. In this paper, we report the real-space observation of the standing adsorption configuration of phenylacetylene on Cu(111) by non-contact atomic force microscopy(nc-AFM).Deposition of phenylacetylene at 25 K shows featureless bright spots in STM images. Using nc-AFM, the line features representing the C–H and C–C bonds in benzene rings are evident, which implies a standing adsorption configuration. Further density functional theory(DFT) calculations reveal multiple optimized adsorption configurations with phenylacetylene breaking its acetylenic bond and forming C–Cu bond(s) with the underlying copper atoms, and hence stand on the substrate.By comparing the nc-AFM simulations with the experimental observation, we identify the standing adsorption configuration of phenylacetylene on Cu(111). Our work demonstrates an application of combining nc-AFM measurements and DFT calculations to the study of standing molecules on substrates, which enriches our knowledge of the adsorption behaviors of small molecules on solid surfaces at low temperatures.展开更多
The elastic indentation modulus and hardness of standard bulk materials and advanced thin films were determined by using the nanoindentation technique followed by the Oliver- Pharr post-treatment. After measurements w...The elastic indentation modulus and hardness of standard bulk materials and advanced thin films were determined by using the nanoindentation technique followed by the Oliver- Pharr post-treatment. After measurements with different loading/unloading schemes on chemically polished bulk titanium a substantial decrease of both modulus and hardness vs an increasing loading time was found. Then, hard nanostructured TiBN and TiCrBN thin films deposited by magnetron sputtering (using multiphase targets) on substrates of high roughness (sintered hard metal) and low roughness (silicon) were studied. Experimental modulus and hardness characterized by using two different nanoindenter tools were within the limits of standard deviation. However, a strong effect of roughness on the spread of the experimental values was observed and it was found that hardness and elastic indentation modulus obeyed a Gaussian distribution. The experimental data were discussed together with scanning probe microscopy (SPM) images of typical imprints taken after the nanoindentation tests and the local topographyls strong correlation with the results of nanoindentation was described.展开更多
An experimental study on cutting amorphous alloy at nanometer scale is conducted by applying the principle and technology of scanning probe microscope(SPM) It is revealed from the experiments that cutting inside SPM...An experimental study on cutting amorphous alloy at nanometer scale is conducted by applying the principle and technology of scanning probe microscope(SPM) It is revealed from the experiments that cutting inside SPM is an excellent and direct way to research the material removal process at small size Based on the experimental results,the chip formation mechanism for the cutting of amorphous alloy is discussed It is found that the deformation along the direction of chip flow occurs ahead of the appearance of localized shear,and a simplified geometrical model is proposed to illustrate the deformation.展开更多
A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc....A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc.The scanning probe system is driven by slow and fast motion mechanisms,corresponding to the stand-by movement of a stepping motor and the fast scanning movement of a high-torque servo-motor,respectively.In fast scanning,the scanner drives the probe radially up to 20 cm at a maximum velocity of 4.0 m s-1.A noncontact magnetic grating ruler with a high spatial resolution of 5μm is used for the displacement measurement.New scanning probe can reach the center of plasmas rapidly.The comparison of plasma floating potential profiles obtained by a fixed radial rake probe and the single scanning probe suggests that the high-speed scanning probe system is reliable for measuring edge plasma parameter profiles on the KTX device.展开更多
A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction...A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.展开更多
In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision sca...In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.展开更多
By means of total energy calculations within the framework of the local density approximation (LDA), the interactions between a silicon Si(001) surface and a scanning probe are investigated. The tip of the probe, comp...By means of total energy calculations within the framework of the local density approximation (LDA), the interactions between a silicon Si(001) surface and a scanning probe are investigated. The tip of the probe, comprising 4 Si atoms scans along the dimer lines above an asymmetric p(2 × 1) surface, at a distance where the chemical interaction between tip-surface is dominant and responsible for image resolution. At that distance, the tip causes the dimer to toggle when it scans above the lower atom of a dimer. The toggled dimers create an alternating pattern, where the immediately adjacent neighbours of a toggled dimer remain unchanged. After the tip has fully scanned across the p(2 × 1) surface, causes the dimers to arrange in a p(2 × 2) reconstruction, reproducing the images obtained in scanning probe experiments. Our modelling methodology includes simulations that reveal the energy input required to overcome the barrier to the onset of dimer toggling. The results show that the energy input to overcome this barrier is lower for the p(2 × 1) surface than that for the p(2 × 2) or c(4 × 2) surfaces.展开更多
文摘In order to explore the characteristics of the three-dimensional surface morphology of sawn timber,a three-dimensional wood surface morphology tester based on the scanning probe method and the principle of atomic force microscope was used to test the three-dimensional sur face morphology of three kinds of sawn timber and calculate its surface roughness.This study also analyzed the reasonable plan for the value of wood surface roughness and the advantages of the three dimensional shape tester,as well as the influence of tree species,three sections,air dry density and other factors on the surface roughness of the specimen after mechanical processing.The results have shown that it is a more appropriate method to select the calculated values of S。and Sq as the evaluation of the surface roughness of wood with random surface characteristics.The three dimensional wood surface topo-graphy tester can efficiently,conveniently and accurately display the three dimensional topography of wood at a micron-level resolution,and is characterized by high eficiency and good durability.The three dimensional surface morphology characteristics of the three sawn woods correspond to their roughness.The surface roughness of woods is arranged as follows:Sitka spruce>Larch>Beech.For the same tree species,the roughness of the corresponding section after sawing is as follows:chordwise section>crosswise section>radial section.The radial section has lower roughness than the other surfaces.The surface roughness of the wood after sawing is mainly related to its air-dry density.The above is intended to provide a useful reference for the application of measuring and evaluating the surface roughness of sawn timber using the three dimensional surface topography test method.
基金supported by Science and Technology Commission of Shanghai Municipality (Grant No 0652NM028)Shanghai Leading Academic Discipline Project of China (B113)the International Research Training Group (IRTG)
文摘This paper illuminates the preparation of grating-like polystyrene latex monolayer structure, which can minimize the effects of the size deviation of spheres and the defect transfer on the accuracy as calibration samples for micro-scopes. The latex films are grown on freshly cleaved mica substrates by vertical deposition method. The concentration dependence of the structure and the topography of latex films is characterized by optical microscope, ultraviolet- visible transmission spectrum and scanning probe microscope. The origination of such a grating-like structure is also discussed.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金supported by the National Natural Science Foundation of China(Nos.51922056 and 51921005).
文摘Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region.However,the structure-property correlation of the interface remains unestablished,and thus,the design of ferroelectric polymer nanocompos-ite has largely relied on the trial-and-error method.Here,a strategy that combines multi-mode scanning probe microscopy-based electrical charac-terization and nano-infrared spectroscopy is developed to unveil the local structure-property correlation of the interface in ferroelectric polymer nano-composites.The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nano-particles.The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer.It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength.
基金National Natural Science Foundation of China(Grant No.51804318)the China Postdoctoral Science Foundation Founded Project(Grant No.2019M650963)National Key Basic Research and Development Program of China(Grant No.2014CB239203).
文摘Morphology of hydraulic fracture surface has significant effects on oil and gas flow,proppant migration and fracture closure,which plays an important role in oil and gas fracturing stimulation.In this paper,we analyzed the fracture surface characteristics induced by supercritical carbon dioxide(SC-CO_(2))and water in open-hole and perforation completion conditions under triaxial stresses.A simple calculation method was proposed to quantitatively analyze the fracture surface area and roughness in macro-level based on three-dimensional(3D)scanning data.In micro-level,scanning electron micrograph(SEM)was used to analyze the features of fracture surface.The results showed that the surface area of the induced fracture increases with perforation angle for both SC-CO_(2)and water fracturing,and the surface area of SC-CO_(2)-induced fracture is 6.49%e58.57%larger than that of water-induced fracture.The fractal dimension and surface roughness of water-induced fractures increase with the increase in perforation angle,while those of SC-CO_(2)-induced fractures decrease with the increasing perforation angle.A considerable number of microcracks and particle peeling pits can be observed on SC-CO_(2)-induced fracture surface while there are more flat particle surfaces in water-induced fracture surface through SEM images,indicating that fractures tend to propagate along the boundary of the particle for SC-CO_(2)fracturing while water-induced fractures prefer to cut through particles.These findings are of great significance for analyzing fracture mechanism and evaluating fracturing stimulation performance.
基金Jiangxi Social Science Planning Project:Research on the Activation of Traditional Villages in Jiangxi Province from the Perspective of Cultural Conservation:A Case Study of Fuhe River Basin(Grant No.17BJ16).
文摘Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser scanning technology.Based on the practical application,this paper puts forward the discussion of related problems and matters needing attention.This has a certain reference significance for the study of new technology in surveying and mapping of ancient buildings.
基金Project(2006CB605004) supported by the National Basic Research Program of China
文摘The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/L NaC1 + 0.01 mol/L Na2S203 solution under slow-strain-rate-testing (SSRT) conditions. Moreover, the characteristics of L-crack's surface morphology and potential distribution with scanning Kelvin probe (SKP) before and after SSRT were also discussed. Compared with S-crack, L-crack is propagated and the features of crack propagation can be obtained. After propagation, the noise amplitudes increase with increasing stress and accelerating corrosion, the white noises at low and high frequencies (WE and WH) of the later stage are one order of magnitude larger than that at early stage in the current power spectral densities (PSDs). The potential PSDs also increase, but WH disappears. In addition, the crack propagation can be demonstrated according to variation of probability distribution, surface morphology and potential distribution.
基金Supported by National Natural Science Foundation of China(Grant No.51375363)
文摘Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.
基金This experimental study was partially funded by the National Natural Science Foundation of China(Grant Nos.41572299and 41831290)the 3D-printed modeling work was supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY18D020003),which is gratefully acknowledged.
文摘This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing.The 3DP resin is used to create transparent specimens to reproduce the surface morphology of a natural joint precisely.The freezing method is employed to enhance the mechanical properties of the 3DP specimens to reproduce the properties of hard rock more accurately.A video camera containing a charge-coupled device(CCD)camera is utilized to record the evolution of damaged area of joint surface during the direct shear test.The optimal shooting distance and shooting angle are recommended to be 800 mm and 40?,respectively.The images captured by the CCD camera are corrected to quantitatively describe the damaged area on the joint surface.Verification indicates that this method can accurately describe the total sheared areas at different shear stages.These findings may contribute to elucidating the shear behavior of rock joints.
文摘This paper introduces the use of STM, AFM and SEM for detection of the mirror-like surface texture andfeatures of hard metals machined by ELID grinding, analyses causes for different measurements of the same surtaceand peesents the preliminary analysis of the mirror-like surface formation by ELID grinding.
基金supported by the National Basic Research Program of China (Grant No. 2010CB923301)the National Natural Science Foundation of China (GrantNos. 11327404 and 11174268)
文摘An ultra-high vacuum (UHV) compatible electron spectrometer employing a double toroidal analyzer has been de- veloped. It is designed to be combined with a custom-made scanning tunneling microscope (STM) to study the spatially localized electron energy spectrum on a surface. A tip-sample system composed of a piezo-driven field-emission tungsten tip and a sample of highly ordered pyrolytic graphite (HOPG) is employed to test the performance of the spectrometer. Two-dimensional images of the energy-resolved and angle-dispersed electrons backscattered from the surface of HOPG are obtained, the performance is optimized and the spectrometer is calibrated. A complete electron energy loss spectrum covering the elastic peak to the secondary electron peaks for the HOPG surface, acquired at a tip voltage of -140 V and a sample current of 0.5 pA, is presented, demonstrating the viability of the spectrometer.
基金the National Natural Science Foundation of China (Nos.50871021and50701006)
文摘The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmosphere environment. The localized corrosion was accurately characterized by SKP in both coated and uncoated regions. The SKP results showed that Volta potential varied with the test time, and the more the corrosion products, the more positive the potential. The borderline between coated and uncoated regions of partly coated steel shifted towards the coated side with the increasing of test time. The coating disbonding rate could be determined according to the shift of potential borderline measured by SKP. The corrosion mechanism of partly coated steel in NaCl salt spray was discussed according to the potential maps and corrosion morphologies.
文摘Cost effective patterning based on scanning probe nanolithography(SPL)has the potential for electronic and optical nano-device manufacturing and other nanotechnological applications.One of the fundamental advantages of SPL is its capability for patterning and imaging employing the same probe.This is achieved with self-sensing and self-actuating cantilevers,also known as‘active'cantilevers.Here we used active cantilevers to demonstrate a novel path towards single digit nanoscale patterning by employing a low energy(<100 eV)electron exposure to thin films of molecular resist.By tuning the electron energies to the lithographically relevant chemical resist transformations,the interaction volumes can be highly localized.This method allows for greater control over spatially confined lithography and enhances sensitivity.We found that at low electron energies,the exposure in ambient conditions required approximately 10 electrons per single calixarene molecule to induce a crosslinking event.The sensitivity was 80-times greater than a classical electron beam exposure at 30 keV.By operating the electro-exposure process in ambient conditions a novel lithographic reaction scheme based on a direct ablation of resist material(positive tone)is presented.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0202300 and 2018YFA0305800)the National Natural Science Foundation of China(Grant Nos.61888102,61474141,and 21661132006)+2 种基金the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11604373)the Outstanding Youth Science Foundation,China(Grant No.61622116)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(Grant Nos.XDB28000000 and XDB30000000)
文摘The adsorption configurations of molecules adsorbed on substrates can significantly affect their physical and chemical properties. A standing configuration can be difficult to determine by traditional techniques, such as scanning tunneling microscopy(STM) due to the superposition of electronic states. In this paper, we report the real-space observation of the standing adsorption configuration of phenylacetylene on Cu(111) by non-contact atomic force microscopy(nc-AFM).Deposition of phenylacetylene at 25 K shows featureless bright spots in STM images. Using nc-AFM, the line features representing the C–H and C–C bonds in benzene rings are evident, which implies a standing adsorption configuration. Further density functional theory(DFT) calculations reveal multiple optimized adsorption configurations with phenylacetylene breaking its acetylenic bond and forming C–Cu bond(s) with the underlying copper atoms, and hence stand on the substrate.By comparing the nc-AFM simulations with the experimental observation, we identify the standing adsorption configuration of phenylacetylene on Cu(111). Our work demonstrates an application of combining nc-AFM measurements and DFT calculations to the study of standing molecules on substrates, which enriches our knowledge of the adsorption behaviors of small molecules on solid surfaces at low temperatures.
基金supported by the "Communauté Franaise de Belgique-ARC 04/09-310"was done in the context of the EC VI FW international EXCELL Project
文摘The elastic indentation modulus and hardness of standard bulk materials and advanced thin films were determined by using the nanoindentation technique followed by the Oliver- Pharr post-treatment. After measurements with different loading/unloading schemes on chemically polished bulk titanium a substantial decrease of both modulus and hardness vs an increasing loading time was found. Then, hard nanostructured TiBN and TiCrBN thin films deposited by magnetron sputtering (using multiphase targets) on substrates of high roughness (sintered hard metal) and low roughness (silicon) were studied. Experimental modulus and hardness characterized by using two different nanoindenter tools were within the limits of standard deviation. However, a strong effect of roughness on the spread of the experimental values was observed and it was found that hardness and elastic indentation modulus obeyed a Gaussian distribution. The experimental data were discussed together with scanning probe microscopy (SPM) images of typical imprints taken after the nanoindentation tests and the local topographyls strong correlation with the results of nanoindentation was described.
基金This project is supported by Foundation of National Education Ministry for Returned Overseas Chinese Scholars(No.2000367) an
文摘An experimental study on cutting amorphous alloy at nanometer scale is conducted by applying the principle and technology of scanning probe microscope(SPM) It is revealed from the experiments that cutting inside SPM is an excellent and direct way to research the material removal process at small size Based on the experimental results,the chip formation mechanism for the cutting of amorphous alloy is discussed It is found that the deformation along the direction of chip flow occurs ahead of the appearance of localized shear,and a simplified geometrical model is proposed to illustrate the deformation.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2017YFE0301700)National Natural Science Foundation of China(No.11635008).
文摘A fast radial scanning probe system was constructed for the Keda Torus eXperiment(KTX)to measure the profiles of boundary plasma parameters such as floating potential,electron density,temperature,transport fluxes,etc.The scanning probe system is driven by slow and fast motion mechanisms,corresponding to the stand-by movement of a stepping motor and the fast scanning movement of a high-torque servo-motor,respectively.In fast scanning,the scanner drives the probe radially up to 20 cm at a maximum velocity of 4.0 m s-1.A noncontact magnetic grating ruler with a high spatial resolution of 5μm is used for the displacement measurement.New scanning probe can reach the center of plasmas rapidly.The comparison of plasma floating potential profiles obtained by a fixed radial rake probe and the single scanning probe suggests that the high-speed scanning probe system is reliable for measuring edge plasma parameter profiles on the KTX device.
文摘A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.
基金National Key Research and Development Pragram of China(No.2016YFF0200602)National Natural Science Foundation of China(No.61973233)。
文摘In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.
文摘By means of total energy calculations within the framework of the local density approximation (LDA), the interactions between a silicon Si(001) surface and a scanning probe are investigated. The tip of the probe, comprising 4 Si atoms scans along the dimer lines above an asymmetric p(2 × 1) surface, at a distance where the chemical interaction between tip-surface is dominant and responsible for image resolution. At that distance, the tip causes the dimer to toggle when it scans above the lower atom of a dimer. The toggled dimers create an alternating pattern, where the immediately adjacent neighbours of a toggled dimer remain unchanged. After the tip has fully scanned across the p(2 × 1) surface, causes the dimers to arrange in a p(2 × 2) reconstruction, reproducing the images obtained in scanning probe experiments. Our modelling methodology includes simulations that reveal the energy input required to overcome the barrier to the onset of dimer toggling. The results show that the energy input to overcome this barrier is lower for the p(2 × 1) surface than that for the p(2 × 2) or c(4 × 2) surfaces.