In Newton’s classical physics, space and time are treated as absolute quantities. Space and time are treated as independent quantities and can be discussed sepa-rately. With his theory of relativity, Einstein proved ...In Newton’s classical physics, space and time are treated as absolute quantities. Space and time are treated as independent quantities and can be discussed sepa-rately. With his theory of relativity, Einstein proved that space and time are de-pendent and must be treated inseparably. Minkowski adopted a four-dimensional space-time frame and indirectly revealed the dependency of space and time by adding a constraint for an event interval. Since space and time are inseparable, a three-dimensional space-time frame can be constructed by embedding time into space to directly show the interdependency of space and time. The formula for time dilation, length contraction, and the Lorenz transformation can be derived from graphs utilizing this new frame. The proposed three-dimensional space-time frame is an alternate frame that can be used to describe motions of objects, and it may improve teaching and learning Special Relativity and provide additional insights into space and time.展开更多
Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing mala...Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing malachite green(MG)in aqueous solution.The microstructures of the adsorbents were characterized by FESEM,TEM and BET,and the effects of initial dye concentration,contact time,solution pH,and temperature on adsorption performance were investigated.The results show that the 3DOM/m-C exhibits extremely high adsorption capacity of 3541.1 mg/g within 2 h,which could be attributed to the novel ordered hierarchical structure with mesopores on three-dimensional ordered macroporous carbon walls.And the adsorption behavior conforms to the pseudo-second-order kinetic and Langmuir adsorption isotherm.3DOM/m-C can be recycled after being desorbed by absolute ethanol,and still maintains a high capacity of 2762.06 mg/g after 5 cycles.展开更多
In this paper,the three-dimensional lattice kinetic scheme is presented to simulate incompressible viscous thermal flows.As compared with the standard LBM,the present scheme has the following good features.It can save...In this paper,the three-dimensional lattice kinetic scheme is presented to simulate incompressible viscous thermal flows.As compared with the standard LBM,the present scheme has the following good features.It can save the computer memory since there is no need to store the density distributions.Like the conventional NS solvers,the implementation of boundary conditions is straightforward since the dependent variables are the macroscopic flow parameters.The easy implementation of boundary conditions is a good property for solving three-dimensional flow problems.The present scheme is validated by simulating the three-dimensional natural convection in an air-filled cubical enclosure,which is heated differentially at two vertical side walls.The obtained numerical results compare very well with available data in the literature.展开更多
The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study ...The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study the flow characteristics in the typical braided river with a mid-bar between two anabranches. In the experiment, two kinds of mid-bar with the ratios of its length to maximal width of 3 and 5 were considered. Moreover, the mid-bar could be moved to adjust the width of two anabranches. The detailed measurements of velocity were conducted using an acoustic Doppler velocimeter over a grid defined throughout the whole braided river region, including the bifurcation, two anabranches and the confluence. In two kinds of mid-bar braided models, a separation zone was observed in the anabranch of the model in which the ratio of length to maximal width of mid-bar is 3, however the separation zone was not found in another model in which the ratio is 5. In addition, the opposite secondary cells were observed at the bend apex of anabranch in two models, and different longitudinal velocity distributions in the entrance region of anabranch account for this opposite flow structure. Finally, turbulent kinetic energy were shown and compared in different situations. The high turbulence occurs at the place with strong shear, especially at the boundary of the separation zone and the high velocity passing flow.展开更多
A new Monte Carlo simulation method for studying three-dimensional microstructures as well as their evolution in polycrystalline materials has been set up. The algorithm is simple and flexible to apply. With the prese...A new Monte Carlo simulation method for studying three-dimensional microstructures as well as their evolution in polycrystalline materials has been set up. The algorithm is simple and flexible to apply. With the present method, kinetics of three-dimensional grain growth is accurately reflected and the simulation efficiency is greatly improved. The simulation can not only be used reliably to analyze quantitatively the microstructures and their evolution, but also be used conveniently to observe microstructures as well as their evolution on the horizontal section and the sections at any angle to the horizontal plane, to measure the characteristic parameters in three dimensions and cross-sections, together with their relationships between the two systems, and to many other aspects.展开更多
Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with t...Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.展开更多
Three-dimensional morphology of ferrite allotriomorphs nucleated at grain boundary edges in low carbon steel was revealed by means of serial sectioning in conjunction with computer-aided three-dimensional reconstructi...Three-dimensional morphology of ferrite allotriomorphs nucleated at grain boundary edges in low carbon steel was revealed by means of serial sectioning in conjunction with computer-aided three-dimensional reconstruction techniques. The typical morphology of them was of an elongated triangular pyramid. The length, width and thickness of ferrite allotriomorphs were measured on the basis of three-dimensional reconstructed images. The aspect ratio (length/width) of them was 4.5 on an average and scattered from 3 to 6. The measured sizes were smaller than calculated ones, which was probably attributed to solute drag-like effect of manganese in the alloy.展开更多
Defining and visualizing the three-dimensional(3 D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanis...Defining and visualizing the three-dimensional(3 D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanism of drug release from complex structured dosage forms, such as bilayer osmotic pump tablets, has not been investigated widely for most solid 3 D structures. In this study, bilayer osmotic pump tablets undergoing dissolution, as well as after dissolution in a desiccated solid state were examined, and visualized by synchrotron radiation micro-computed tomography(SR-μCT). In situ formed 3 D structures at different in vitro drug release states were characterized comprehensively. A distinct movement pattern of NaCl crystals from the push layer to the drug layer was observed, beneath the semi-permeable coating in the desiccated tablet samples. The 3 D structures at different dissolution time revealed that the pushing upsurge in the bilayer osmotic pump tablet was directed via peripheral“roadways”. Typically, different regions of the osmotic front, infiltration region, and dormant region were classified in the push layer during the dissolution of drug from tablet samples. According to the observed3 D microstructures, a “subterranean river model” for the drug release mechanism has been defined to explain the drug release mechanism.展开更多
In Newton’s classical physics, space and time are treated as absolute, independent quantities and can be discussed separately. In Special Relativity, Einstein proved that space and time are relative and dependent and...In Newton’s classical physics, space and time are treated as absolute, independent quantities and can be discussed separately. In Special Relativity, Einstein proved that space and time are relative and dependent and therefore must not be treated separately. Minkowski adopted four-dimensional space-time frames (4-d s-t frames), which indirectly revealed the dependency of space and time with the addition of a constraint for an event interval. We are not able to visualize 4-d s-t frames. Since space and time are inseparable, three-dimensional space-time frames (3-d s-t frames) can be constructed by embedding time into space to directly show the interdependency of space and time. Time contraction and length contraction can also be depicted graphically using 3-d s-t frames. We have much better understanding reality of space and time in 3-d s-t frames. This will lead to Contextual Reality for better understanding the universe.展开更多
Fundamental units of measurements are kilograms, meters, and seconds—in regards to mass length, and time. All other measurements in mechanical quantities including kinetic quantities and dynamic quantities are called...Fundamental units of measurements are kilograms, meters, and seconds—in regards to mass length, and time. All other measurements in mechanical quantities including kinetic quantities and dynamic quantities are called derived units. These derived units can be expressed in terms of fundamental units, such as acceleration, area, energy, force, power, velocity and volume. Derived quantities will be referred to as time, length, and mass. In order to explain that fundamental units are not equivalent with fundamental quantities, we need to understand the contraction of time and length in Special Relativity. If we choose the velocity of light as fundamental quantity and length and time as derived quantities, then we are able to construct three-dimensional space-time frames. Three-dimensional space-time frames representing time with polar coordination, time contraction and length contraction can be shown graphically.展开更多
This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln =...This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.展开更多
文摘In Newton’s classical physics, space and time are treated as absolute quantities. Space and time are treated as independent quantities and can be discussed sepa-rately. With his theory of relativity, Einstein proved that space and time are de-pendent and must be treated inseparably. Minkowski adopted a four-dimensional space-time frame and indirectly revealed the dependency of space and time by adding a constraint for an event interval. Since space and time are inseparable, a three-dimensional space-time frame can be constructed by embedding time into space to directly show the interdependency of space and time. The formula for time dilation, length contraction, and the Lorenz transformation can be derived from graphs utilizing this new frame. The proposed three-dimensional space-time frame is an alternate frame that can be used to describe motions of objects, and it may improve teaching and learning Special Relativity and provide additional insights into space and time.
基金Projects(U1802254,51871201)supported by the National Natural Science Foundation of ChinaProject(LY18E040003)supported by the Zhejiang Provincial Natural Science Foundation,China
文摘Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing malachite green(MG)in aqueous solution.The microstructures of the adsorbents were characterized by FESEM,TEM and BET,and the effects of initial dye concentration,contact time,solution pH,and temperature on adsorption performance were investigated.The results show that the 3DOM/m-C exhibits extremely high adsorption capacity of 3541.1 mg/g within 2 h,which could be attributed to the novel ordered hierarchical structure with mesopores on three-dimensional ordered macroporous carbon walls.And the adsorption behavior conforms to the pseudo-second-order kinetic and Langmuir adsorption isotherm.3DOM/m-C can be recycled after being desorbed by absolute ethanol,and still maintains a high capacity of 2762.06 mg/g after 5 cycles.
文摘In this paper,the three-dimensional lattice kinetic scheme is presented to simulate incompressible viscous thermal flows.As compared with the standard LBM,the present scheme has the following good features.It can save the computer memory since there is no need to store the density distributions.Like the conventional NS solvers,the implementation of boundary conditions is straightforward since the dependent variables are the macroscopic flow parameters.The easy implementation of boundary conditions is a good property for solving three-dimensional flow problems.The present scheme is validated by simulating the three-dimensional natural convection in an air-filled cubical enclosure,which is heated differentially at two vertical side walls.The obtained numerical results compare very well with available data in the literature.
基金Project supported by the National Natural Science Foundation of China(Grant No.50679019)the National Basic Research Program of China(973Program,Grant No.2008CB418202)+1 种基金the project of"Six Talent Peak"of Jiangsu Province(Grant No.08-C)the Social Technology Development Foundation of Jiangsu Province(Grant No.BS2006095).
文摘The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study the flow characteristics in the typical braided river with a mid-bar between two anabranches. In the experiment, two kinds of mid-bar with the ratios of its length to maximal width of 3 and 5 were considered. Moreover, the mid-bar could be moved to adjust the width of two anabranches. The detailed measurements of velocity were conducted using an acoustic Doppler velocimeter over a grid defined throughout the whole braided river region, including the bifurcation, two anabranches and the confluence. In two kinds of mid-bar braided models, a separation zone was observed in the anabranch of the model in which the ratio of length to maximal width of mid-bar is 3, however the separation zone was not found in another model in which the ratio is 5. In addition, the opposite secondary cells were observed at the bend apex of anabranch in two models, and different longitudinal velocity distributions in the entrance region of anabranch account for this opposite flow structure. Finally, turbulent kinetic energy were shown and compared in different situations. The high turbulence occurs at the place with strong shear, especially at the boundary of the separation zone and the high velocity passing flow.
文摘A new Monte Carlo simulation method for studying three-dimensional microstructures as well as their evolution in polycrystalline materials has been set up. The algorithm is simple and flexible to apply. With the present method, kinetics of three-dimensional grain growth is accurately reflected and the simulation efficiency is greatly improved. The simulation can not only be used reliably to analyze quantitatively the microstructures and their evolution, but also be used conveniently to observe microstructures as well as their evolution on the horizontal section and the sections at any angle to the horizontal plane, to measure the characteristic parameters in three dimensions and cross-sections, together with their relationships between the two systems, and to many other aspects.
基金financially supported by the National Natural Science Foundation of China(No.41573130)BNU Interdisciplinary Research Foundation for First-Year Doctoral Candidates(No.BNUXKJC1802)
文摘Simulated photo-degradation of fluorescent dissolved organic matter(FDOM) in Lake Baihua(BH) and Lake Hongfeng(HF) was investigated with three-dimensional excitationemission matrix(3 DEEM) fluorescence combined with the fluorescence regional integration(FRI),parallel factor(PARAFAC) analysis,and multi-order kinetic models.In the FRI analysis,fulvic-like and humic-like materials were the main constituents for both BH-FDOM and HF-FDOM.Four individual components were identified by use of PARAFAC analysis as humic-like components(C1),fulvic-like components(C2),protein-like components(C3) and unidentified components(C4).The maximum 3 DEEM fluorescence intensity of PARAFAC components C1-C3 decreased by about 60%,70% and 90%,respectively after photo-degradation.The multi-order kinetic model was acceptable to represent the photo-degradation of FDOM with correlation coefficient(Radj2)(0.963-0.998).The photo-degradation rate constants(kn) showed differences of three orders of magnitude,from 1.09 × 10-6 to 4.02 × 10-4 min-1,and half-life of multi-order model(T1/2n)ranged from 5.26 to 64.01 min.The decreased values of fluorescence index(FI) and biogenic index(BI),the fact that of percent fluorescence response parameter of Region I(PⅠ,n) showed the greatest change ratio,followed by percent fluorescence response parameter of Region II(PⅡ,n,while the largest decrease ratio was found for C3 components,and the lowest T1/2n was observed for C3,indicated preferential degradation of protein-like materials/components derived from biological sources during photodegradation.This research on the degradation of FDOM by 3 DEEM/FRI-PARAFAC would be beneficial to understanding the photo-degradation of FD OM in natural environments and accurately predicting the environmental behaviors of contaminants in the presence of FDOM.
基金Item Sponsored by National Natural Science Foundation of China and Baosteel (50734004)
文摘Three-dimensional morphology of ferrite allotriomorphs nucleated at grain boundary edges in low carbon steel was revealed by means of serial sectioning in conjunction with computer-aided three-dimensional reconstruction techniques. The typical morphology of them was of an elongated triangular pyramid. The length, width and thickness of ferrite allotriomorphs were measured on the basis of three-dimensional reconstructed images. The aspect ratio (length/width) of them was 4.5 on an average and scattered from 3 to 6. The measured sizes were smaller than calculated ones, which was probably attributed to solute drag-like effect of manganese in the alloy.
基金the National Nature Science Foundation of China (Nos.81803446,81803441 and 81773645)Key Program for International Science and Technology Cooperation Projects of China (2020YFE0201700)the Youth Innovation Promotion Association of CAS (2018323)。
文摘Defining and visualizing the three-dimensional(3 D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanism of drug release from complex structured dosage forms, such as bilayer osmotic pump tablets, has not been investigated widely for most solid 3 D structures. In this study, bilayer osmotic pump tablets undergoing dissolution, as well as after dissolution in a desiccated solid state were examined, and visualized by synchrotron radiation micro-computed tomography(SR-μCT). In situ formed 3 D structures at different in vitro drug release states were characterized comprehensively. A distinct movement pattern of NaCl crystals from the push layer to the drug layer was observed, beneath the semi-permeable coating in the desiccated tablet samples. The 3 D structures at different dissolution time revealed that the pushing upsurge in the bilayer osmotic pump tablet was directed via peripheral“roadways”. Typically, different regions of the osmotic front, infiltration region, and dormant region were classified in the push layer during the dissolution of drug from tablet samples. According to the observed3 D microstructures, a “subterranean river model” for the drug release mechanism has been defined to explain the drug release mechanism.
文摘In Newton’s classical physics, space and time are treated as absolute, independent quantities and can be discussed separately. In Special Relativity, Einstein proved that space and time are relative and dependent and therefore must not be treated separately. Minkowski adopted four-dimensional space-time frames (4-d s-t frames), which indirectly revealed the dependency of space and time with the addition of a constraint for an event interval. We are not able to visualize 4-d s-t frames. Since space and time are inseparable, three-dimensional space-time frames (3-d s-t frames) can be constructed by embedding time into space to directly show the interdependency of space and time. Time contraction and length contraction can also be depicted graphically using 3-d s-t frames. We have much better understanding reality of space and time in 3-d s-t frames. This will lead to Contextual Reality for better understanding the universe.
文摘Fundamental units of measurements are kilograms, meters, and seconds—in regards to mass length, and time. All other measurements in mechanical quantities including kinetic quantities and dynamic quantities are called derived units. These derived units can be expressed in terms of fundamental units, such as acceleration, area, energy, force, power, velocity and volume. Derived quantities will be referred to as time, length, and mass. In order to explain that fundamental units are not equivalent with fundamental quantities, we need to understand the contraction of time and length in Special Relativity. If we choose the velocity of light as fundamental quantity and length and time as derived quantities, then we are able to construct three-dimensional space-time frames. Three-dimensional space-time frames representing time with polar coordination, time contraction and length contraction can be shown graphically.
基金the National Natural Science Foundation of China (21073053,21073052 and 20773034)the Natural Science Foundation of Hebei Province (B2012205022)
文摘This paper describes syntheses and structure determination of four lanthanide complexes [Nd(2-Cl-4-FBA) 3 phen] 2 (1, 2-Cl-4-FBA = 2-chloro-4-fluorobenzoate, phen = 1,10-phenanthroline), [Ln(2,5-DClBA) 3 phen] 2 (Ln = Sm(2) and Tb(3), 2,5-DClBA = 2,5-dichlorobenzoate) and [Sm(2-Cl-4,5-DFBA) 3 (phen)(H 2 O)] 2 (4, (2-Cl-4,5-DFBA = 2-chloro-4,5-difluorobenzo- ate). The complexes were characterized by elemental analysis, infrared and ultraviolet spectra, and X-ray single-crystal diffraction. In the molecular structures of 1 4, two Ln 3+ ions are linked by four carboxyl groups, with two of them in a bridging bidentate mode and the other two in a bridging-chelating tridentate mode, forming four binuclear molecules. In addition, each Ln 3+ ion is also chelated to one phen molecule and one carboxyl group in the complexes, except each Sm 3+ ion in 4 which is bonded to one carboxyl group by unidentate mode and one H 2 O molecule. There are two different coordination polyhedrons for each Nd 3+ ion in the two similar molecular structures of 1 and they are a distorted monocapped square antiprismatic and a distorted tricapped triangular prism conformation, respectively. The coordination polyhedron for each Ln 3+ ion in 2 4 is a nine-coordinated distorted mono-capped square antiprismatic conformation. The complex 3 exhibits green luminescence under the radiation of UV light. The thermal decomposition behaviors of the complexes have been discussed by simultaneous TG/DSC-FTIR technique. The 3D surface graphs for the FTIR spectra of the evolved gases were recorded and the gaseous products were identified by the typical IR spectra obtained at different temperatures from the 3D surface graphs. Meanwhile, we discussed the nonisothermal kinetics of 1 4 by the integral isoconversional non-linear (NL-INT) method.