We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all s...We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all sharersmust make a state measurement.The merit of our protocol is the high capacity.展开更多
A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on...A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.展开更多
Considering the spin degree of freedom of the Dirac field, we study the entanglement behavior of a different class of communication channel and teleportation of three-dimensional single particle state in noninertial f...Considering the spin degree of freedom of the Dirac field, we study the entanglement behavior of a different class of communication channel and teleportation of three-dimensional single particle state in noninertial frames. Numerical analysis shows that the communication channel in our scheme can offer enough distillable entanglement for the teleportation protocol. Moreover, the teleportation protocol could work well if Rob's acceleration is not very big, but the fidelity of the teleportation is still reduced due to the Unruh effect.展开更多
In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate...In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition.展开更多
A scheme is proposed for generating a multiparticle three-dimensional entangled state by appropriately adiabatic evolutions, where atoms are respectively trapped in separated cavities so that individual addressing is ...A scheme is proposed for generating a multiparticle three-dimensional entangled state by appropriately adiabatic evolutions, where atoms are respectively trapped in separated cavities so that individual addressing is needless. In the ideal case, losses due to the spontaneous transition of an atom and the excitation of photons are efficiently suppressed since atoms are all in ground states and the fields remain in a vacuum state. Compared with the previous proposals, the present scheme reduces its required operation time via simultaneously controlling four classical fields. This advantage would become even more obvious as the number of atoms increases. The experimental feasibility is also discussed. The successful preparation of a high-dimensional multiparticle entangled state among distant atoms provides better prospects for quantum communication and distributed quantum computation.展开更多
Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states...Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states in the presence of a strong magnetic field, which exhibit a one-dimensional metal-insulator crossover due to suppression of surface diffusion by disorder potential. We study the nontrivial surface states in a lattice model and find a wide crossover of the level-spacing distribution through a semi-Poisson distribution. We also discover a nonmonotonic evolution of the level statistics due to the disorder-induced mixture of surface and bulk states.展开更多
Based upon the theory of the nonlinear quadric two-person nonzero-sum differential game,the fact that the time-limited mixed H2/H∞ control problem can be turned into the problem of solving the state feedback Nash bal...Based upon the theory of the nonlinear quadric two-person nonzero-sum differential game,the fact that the time-limited mixed H2/H∞ control problem can be turned into the problem of solving the state feedback Nash balance point is mentioned. Upon this,a theorem about the solution of the state feedback control is given,the Lyapunov stabilization of the nonlinear system under this control is proved,too. At the same time,this solution is used to design the nonlinear H2/H∞ guidance law of the relative motion between the missile and the target in three-dimensional(3D) space. By solving two coupled Hamilton-Jacobi partial differential inequalities(HJPDI),a control with more robust stabilities and more robust performances is obtained. With different H∞ performance indexes,the correlative weighting factors of the control are analytically designed. At last,simulations under different robust performance indexes and under different initial conditions and under the cases of intercepting different maneuvering targets are carried out. All results indicate that the designed law is valid.展开更多
According to theory of constraints( TOCs), the performance of a complex manufacturing system,such as a wafer fabrication system,is mainly determined by its bottleneck machine.A method of the identification and predict...According to theory of constraints( TOCs), the performance of a complex manufacturing system,such as a wafer fabrication system,is mainly determined by its bottleneck machine.A method of the identification and prediction of the bottleneck machine was proposed in transient states of a system. Firstly,the bottleneck index was formulated based on the workloads and the variability in wafer fabrication systems. Secondly, main factors causing the variability and their influences on the bottleneck machine in transient states of the system were analyzed and discussed. An effective bottleneck identification and prediction model was presented,which incorporated the variability and queuing theory,and took machine breakdowns and setups into considerations.Finally,the proposed bottleneck prediction method was verified by simulation experiments. Results indicate that the proposed bottleneck prediction method is feasible and effective.展开更多
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated wo...The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ~6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.展开更多
This is a continued work in studying the wave propagation in a magneto-electroelastic square column (MEESC). Based on the analytic dispersive equation, group velocity equation and steady-state response obtained in o...This is a continued work in studying the wave propagation in a magneto-electroelastic square column (MEESC). Based on the analytic dispersive equation, group velocity equation and steady-state response obtained in our previous paper 'Steady-state response of the wave propagation in a magneto-electro-elastic square column' published in CME, the dynamical behavior of MEESC was studied in this paper. The unlimited column is an open system. The transientstate response in the open system subjected by arbitrary external fields was derived when the propagating wave pursuing method was introduced.展开更多
We developed a transient model for actin-based motility.Diffusion of actin monomers was included in the formulation and its influence on the speed of actin-driven cargos was examined in detail.Our results clearly demo...We developed a transient model for actin-based motility.Diffusion of actin monomers was included in the formulation and its influence on the speed of actin-driven cargos was examined in detail.Our results clearly demonstrated how actin polymerization accelerates cargos that are initially stationary,as well as how steady-state is eventually reached.We also found that,due to polymerization and diffusion,actin monomer concentration near the load surface can be significantly lower than that in the rest of the comet tail,suggesting that many previous models may not be very accurate.展开更多
A three-dimensional state space method has been developed for the calculation of dynamic response of plates with two free edges and two simply supported edges.A complex damping model was introduced, then the exact sol...A three-dimensional state space method has been developed for the calculation of dynamic response of plates with two free edges and two simply supported edges.A complex damping model was introduced, then the exact solutions which satisfy all the governing equations and boundary conditions were obtained.In order to overcome the difficulty of satisfying all the stress conditions at free edges, the displacement functions of free edges were assumed.The boundary conditions were strictly satisfied when the convergence rate was good.The computing time was evidently less than that of finite element method.The comparison of the solution with those of finite element method show that there is an excellent agreement for displacements.When the imaginary parts of normal stress deviated, the finite element results showed existence of shear stresses at top and bottom surfaces, and the boundary conditions of FEM model were not strictly satisfied.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
The features of transient to steady state deformation of solids are theoretically investigated.Modeling of various types of loading was carried out by the Movable Cellular Automata method.A stress state of material at...The features of transient to steady state deformation of solids are theoretically investigated.Modeling of various types of loading was carried out by the Movable Cellular Automata method.A stress state of material at the stage of transient to a steady state is shown to be essentially non-uniform, that may in its turn result in stable structures in velocity field of particles of the material. It may also influence development of deformation at the further stages.展开更多
The carrier transport properties of the blends of the hole transport material poly(N-vinylcarbazole) (PVK) and the electron transport material tris (8-hydroxyquinolinolato) aluminumⅢ(Alq_3) are investigated at room t...The carrier transport properties of the blends of the hole transport material poly(N-vinylcarbazole) (PVK) and the electron transport material tris (8-hydroxyquinolinolato) aluminumⅢ(Alq_3) are investigated at room temperature using steady-state and time-resolved transient photocurrent measurements as a function of doping concentration of Alq_3.Due to lower LUMO and higher HOMO energy level of Alq_3 than those of PVK,Alq_3 molecules may act as carrier trap states in PVK films at low concentration.However,at...展开更多
The State Key Laboratory of Transient OpticsTechnology is attached to the Xi’an Institute ofOptics and Precision Mechanics of the CAS. The Laboratory is devoted to study of the theory and technology of transient opti...The State Key Laboratory of Transient OpticsTechnology is attached to the Xi’an Institute ofOptics and Precision Mechanics of the CAS. The Laboratory is devoted to study of the theory and technology of transient optics. Its research fields include concepts and technologies of ultrashort pulse generation, amplification, compression and measurement, ultrafast processes of interaction between light and matter, development, and application of measurement equipment of transient optics for scientific research and production. At present, its research activities are the following:展开更多
The forward modeling procedure used in this article is formulated with the volume integral equation based on the tensor Green's function. The electromagnetic components responses are first calculated in the frequency...The forward modeling procedure used in this article is formulated with the volume integral equation based on the tensor Green's function. The electromagnetic components responses are first calculated in the frequency domain and then transformed to the time domain by digital filtering. The valley and hill topography with a layered earth is stimulated by a horizontal electric dipole (HED) transmitter, which is common in field surveys, and the TEM responses are calculated at the transmitter and receivers. The topography effects on the long offset electromagnetic transient (LOTEM) responses are discussed in detail. The results show that both valley and hill topography has significant effect on the LOTEM measurement. If the HED is located in the bottom of a valley, the distortion of the observed anomalous field at distance is severe. A valley at the receiver locations show a strong effect but are localized in space and time. In general, hill-shaped topography shows smaller effects no matter where its located. When the topography is located between source and receivers, the influence is negligible. We conclude that the location of the source is much more important than the receivers and it is critical to put the transmitter in an open flat area in the field survey.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
The definition of a reference state close to the realistic atmosphere in an atmospheric model is essential for deriving prognostic deviations and improving numerical accuracy.In this study,a new dynamical framework al...The definition of a reference state close to the realistic atmosphere in an atmospheric model is essential for deriving prognostic deviations and improving numerical accuracy.In this study,a new dynamical framework allowing easy switching between a one-dimensional(1D)and a three-dimensional(3D)time-independent reference state is developed for the semi-implicit semi-Lagrangian solver in a global non-hydrostatic atmospheric model on Yin–Yang grids.The 3D reference state is introduced with consideration of additional horizontal gradient terms of referencestate terms,which is different from the 1D reference state.It is characterized by reduced magnitude of deviations,more accurate pressure gradient force,as well as alleviated numerical noise.Four idealized benchmark tests and multiple full-physics real-case forecasts are carried out to assess the impact of the 3D and 1D reference states.The 3D reference state shows significant advantages in the simulation of atmospheric transport and wave propagation in the idealized experiments.In the real-case forecasts,batched forecasts from June to August 2021 show a comprehensive improvement in medium-range prediction by using the 3D reference state.The new scheme achieves an enhanced prediction skill for large-scale circulation and extends the effective forecast period by 0.8 days in the Northern Hemisphere.展开更多
This paper is a continuation of [8]. In Section 1, three kinds of communication are introdnced for two states and the relations among them are investigated. In Section 2, two kinds of period of a state are introdnced ...This paper is a continuation of [8]. In Section 1, three kinds of communication are introdnced for two states and the relations among them are investigated. In Section 2, two kinds of period of a state are introdnced and it is obtained that the period is a 'class property',i.e. two states x and y belong to same class implies the period of x is equal to the period of y.展开更多
文摘We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all sharersmust make a state measurement.The merit of our protocol is the high capacity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61068001 and 11264042)the Postdoctoral Science Foundation of China(Grant No.2012M520612)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11064016 and 61068001)
文摘Considering the spin degree of freedom of the Dirac field, we study the entanglement behavior of a different class of communication channel and teleportation of three-dimensional single particle state in noninertial frames. Numerical analysis shows that the communication channel in our scheme can offer enough distillable entanglement for the teleportation protocol. Moreover, the teleportation protocol could work well if Rob's acceleration is not very big, but the fidelity of the teleportation is still reduced due to the Unruh effect.
基金Supported by Key Program of National Natural Science Foundation of China under Grant No. 60931002National Natural Science Foundation of China under Grant No.10704001+3 种基金Anhui Provincial Natural Science Foundation under Grant No. 070412060the Major Program of the Education Department of Anhui Province under Grant No. KJ2010ZD08the Key Program of the Education Department of Anhui Province under Grant No. KJ2010A287the Personal Development Foundation of Anhui Province under Grant No. 2009Z022
文摘In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61275215 and 11004033)the National Fundamental Research Program of China (Grant No. 2011CBA00203)the Natural Science Foundation of Fujian Province, China (Grant No. 2010J01002)
文摘A scheme is proposed for generating a multiparticle three-dimensional entangled state by appropriately adiabatic evolutions, where atoms are respectively trapped in separated cavities so that individual addressing is needless. In the ideal case, losses due to the spontaneous transition of an atom and the excitation of photons are efficiently suppressed since atoms are all in ground states and the fields remain in a vacuum state. Compared with the previous proposals, the present scheme reduces its required operation time via simultaneously controlling four classical fields. This advantage would become even more obvious as the number of atoms increases. The experimental feasibility is also discussed. The successful preparation of a high-dimensional multiparticle entangled state among distant atoms provides better prospects for quantum communication and distributed quantum computation.
基金Supported by the National Natural Science Foundation of China (Grant No.11674282)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB28000000)。
文摘Recent experiments have demonstrated the realization of the three-dimensional quantum Hall effect in highly anisotropic crystalline materials, such as ZrTe|_5 and BaMnSb_2. Such a system supports chiral surface states in the presence of a strong magnetic field, which exhibit a one-dimensional metal-insulator crossover due to suppression of surface diffusion by disorder potential. We study the nontrivial surface states in a lattice model and find a wide crossover of the level-spacing distribution through a semi-Poisson distribution. We also discover a nonmonotonic evolution of the level statistics due to the disorder-induced mixture of surface and bulk states.
基金Sponsored by the National Natural Science Foundation of China (Grant No.90716028)
文摘Based upon the theory of the nonlinear quadric two-person nonzero-sum differential game,the fact that the time-limited mixed H2/H∞ control problem can be turned into the problem of solving the state feedback Nash balance point is mentioned. Upon this,a theorem about the solution of the state feedback control is given,the Lyapunov stabilization of the nonlinear system under this control is proved,too. At the same time,this solution is used to design the nonlinear H2/H∞ guidance law of the relative motion between the missile and the target in three-dimensional(3D) space. By solving two coupled Hamilton-Jacobi partial differential inequalities(HJPDI),a control with more robust stabilities and more robust performances is obtained. With different H∞ performance indexes,the correlative weighting factors of the control are analytically designed. At last,simulations under different robust performance indexes and under different initial conditions and under the cases of intercepting different maneuvering targets are carried out. All results indicate that the designed law is valid.
基金National Natural Science Foundations of China(Nos.61273035,71471135)
文摘According to theory of constraints( TOCs), the performance of a complex manufacturing system,such as a wafer fabrication system,is mainly determined by its bottleneck machine.A method of the identification and prediction of the bottleneck machine was proposed in transient states of a system. Firstly,the bottleneck index was formulated based on the workloads and the variability in wafer fabrication systems. Secondly, main factors causing the variability and their influences on the bottleneck machine in transient states of the system were analyzed and discussed. An effective bottleneck identification and prediction model was presented,which incorporated the variability and queuing theory,and took machine breakdowns and setups into considerations.Finally,the proposed bottleneck prediction method was verified by simulation experiments. Results indicate that the proposed bottleneck prediction method is feasible and effective.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2014CB046403)National Key Technology R&D Program of the Twelfth Five-year Plan of China(Grant No.2013BAF07B01)
文摘The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ~6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test accuracy of flow ripple is above 93.07%. The model constructed in this research proposes a method to determine the flow ripple characteristics of pump and its attainable test accuracy under the large-scale and time-variant working conditions. Meanwhile, a discussion about the variation of flow ripple and its obtainable test accuracy with the conditions of the pump working in wide operating ranges is given as well.
基金supported by the National Natural Science Foundation of China(No.10572001).
文摘This is a continued work in studying the wave propagation in a magneto-electroelastic square column (MEESC). Based on the analytic dispersive equation, group velocity equation and steady-state response obtained in our previous paper 'Steady-state response of the wave propagation in a magneto-electro-elastic square column' published in CME, the dynamical behavior of MEESC was studied in this paper. The unlimited column is an open system. The transientstate response in the open system subjected by arbitrary external fields was derived when the propagating wave pursuing method was introduced.
基金supported by the National Natural Science Foundation of China(Grant Nos.A020307 and 11072094)the program for New Century Excellent Talents in University(NCET-10-0445)
文摘We developed a transient model for actin-based motility.Diffusion of actin monomers was included in the formulation and its influence on the speed of actin-driven cargos was examined in detail.Our results clearly demonstrated how actin polymerization accelerates cargos that are initially stationary,as well as how steady-state is eventually reached.We also found that,due to polymerization and diffusion,actin monomer concentration near the load surface can be significantly lower than that in the rest of the comet tail,suggesting that many previous models may not be very accurate.
文摘A three-dimensional state space method has been developed for the calculation of dynamic response of plates with two free edges and two simply supported edges.A complex damping model was introduced, then the exact solutions which satisfy all the governing equations and boundary conditions were obtained.In order to overcome the difficulty of satisfying all the stress conditions at free edges, the displacement functions of free edges were assumed.The boundary conditions were strictly satisfied when the convergence rate was good.The computing time was evidently less than that of finite element method.The comparison of the solution with those of finite element method show that there is an excellent agreement for displacements.When the imaginary parts of normal stress deviated, the finite element results showed existence of shear stresses at top and bottom surfaces, and the boundary conditions of FEM model were not strictly satisfied.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
文摘The features of transient to steady state deformation of solids are theoretically investigated.Modeling of various types of loading was carried out by the Movable Cellular Automata method.A stress state of material at the stage of transient to a steady state is shown to be essentially non-uniform, that may in its turn result in stable structures in velocity field of particles of the material. It may also influence development of deformation at the further stages.
基金Trans-Century Training Program Foundation for the Talents of Natural Science by the State Education Commission,Key Project of Chinese Ministry of Education (No.105041)National Natural Science & Foundation Committee of China (NSFC) (Nos.90401006,10434030 and 90301004)+1 种基金State key project of basic research (No.2003CB314707)the Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology,South China University of Technology,Ministry of Education,China.One of the authors (Hui Jin) is also grateful to the Doctor Innovation Foundation of Beijing Jiaotong University for financial support.
文摘The carrier transport properties of the blends of the hole transport material poly(N-vinylcarbazole) (PVK) and the electron transport material tris (8-hydroxyquinolinolato) aluminumⅢ(Alq_3) are investigated at room temperature using steady-state and time-resolved transient photocurrent measurements as a function of doping concentration of Alq_3.Due to lower LUMO and higher HOMO energy level of Alq_3 than those of PVK,Alq_3 molecules may act as carrier trap states in PVK films at low concentration.However,at...
文摘The State Key Laboratory of Transient OpticsTechnology is attached to the Xi’an Institute ofOptics and Precision Mechanics of the CAS. The Laboratory is devoted to study of the theory and technology of transient optics. Its research fields include concepts and technologies of ultrashort pulse generation, amplification, compression and measurement, ultrafast processes of interaction between light and matter, development, and application of measurement equipment of transient optics for scientific research and production. At present, its research activities are the following:
基金supported by National Natural Science Foundation of China (Nos. 40727001, 40774073, and 40774074)the National Basic Research Programs of China (973 Program) (No. 2007CB209607)the Doctoral Program of Higher Research and Special funds (No. 20070489001)
文摘The forward modeling procedure used in this article is formulated with the volume integral equation based on the tensor Green's function. The electromagnetic components responses are first calculated in the frequency domain and then transformed to the time domain by digital filtering. The valley and hill topography with a layered earth is stimulated by a horizontal electric dipole (HED) transmitter, which is common in field surveys, and the TEM responses are calculated at the transmitter and receivers. The topography effects on the long offset electromagnetic transient (LOTEM) responses are discussed in detail. The results show that both valley and hill topography has significant effect on the LOTEM measurement. If the HED is located in the bottom of a valley, the distortion of the observed anomalous field at distance is severe. A valley at the receiver locations show a strong effect but are localized in space and time. In general, hill-shaped topography shows smaller effects no matter where its located. When the topography is located between source and receivers, the influence is negligible. We conclude that the location of the source is much more important than the receivers and it is critical to put the transmitter in an open flat area in the field survey.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
基金Supported by the National Natural Science Foundation of China(42375153,42075151,and 42205157).
文摘The definition of a reference state close to the realistic atmosphere in an atmospheric model is essential for deriving prognostic deviations and improving numerical accuracy.In this study,a new dynamical framework allowing easy switching between a one-dimensional(1D)and a three-dimensional(3D)time-independent reference state is developed for the semi-implicit semi-Lagrangian solver in a global non-hydrostatic atmospheric model on Yin–Yang grids.The 3D reference state is introduced with consideration of additional horizontal gradient terms of referencestate terms,which is different from the 1D reference state.It is characterized by reduced magnitude of deviations,more accurate pressure gradient force,as well as alleviated numerical noise.Four idealized benchmark tests and multiple full-physics real-case forecasts are carried out to assess the impact of the 3D and 1D reference states.The 3D reference state shows significant advantages in the simulation of atmospheric transport and wave propagation in the idealized experiments.In the real-case forecasts,batched forecasts from June to August 2021 show a comprehensive improvement in medium-range prediction by using the 3D reference state.The new scheme achieves an enhanced prediction skill for large-scale circulation and extends the effective forecast period by 0.8 days in the Northern Hemisphere.
文摘This paper is a continuation of [8]. In Section 1, three kinds of communication are introdnced for two states and the relations among them are investigated. In Section 2, two kinds of period of a state are introdnced and it is obtained that the period is a 'class property',i.e. two states x and y belong to same class implies the period of x is equal to the period of y.