The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, e...The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.展开更多
In this paper,a class of functional-coefficient regression models is proposed and an estimation procedure based on the locally weighted least equares is suggested.This class of models,with the proposed estimation meth...In this paper,a class of functional-coefficient regression models is proposed and an estimation procedure based on the locally weighted least equares is suggested.This class of models,with the proposed estimation method,is a powerful means for exploratory data analysis.展开更多
This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-sco...This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful.展开更多
A three-dimensional, first order turbulence closure, thermal diffusion model is described in this paper. The governing equations consist of an equation of continuity, three components of momentum, conservation equatio...A three-dimensional, first order turbulence closure, thermal diffusion model is described in this paper. The governing equations consist of an equation of continuity, three components of momentum, conservation equations for salt, temperature and subgridscale energy, and an equation of state. In the model, according to the hypothesis of Kolmogorov and Prandtl, the viscosity coefficient of turbulent flow of homogeneous fluid is related to the local turbulent energy, and the horizontal and vertical exchange coefficients of mass, heat and momentum are computed with the introduction of subgridscale turbulence energy. The governing equations are solved by finite difference techniques. This model is applied to the Jiaozhou bay to predict thermal pollution by the Huangdao power plant. An instantaneous tidal current field is computed, then the distribution of temperature increment is predicted, and finally the effect of wind stress on thermal discharge is discussed.展开更多
基金Supported by the National Natural Science Foundation of China(30400275)the Tackle Key Problems of Heilongjiang Province(the Hobbledehoy Science Fund of Heilongjiang Province)(QC04C28)
文摘The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.
文摘In this paper,a class of functional-coefficient regression models is proposed and an estimation procedure based on the locally weighted least equares is suggested.This class of models,with the proposed estimation method,is a powerful means for exploratory data analysis.
基金supported by the Fundamental Research Funds for the Central Universities (QN0914)
文摘This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2008AA04Z129) National Natural Science Foundation of China (60504010 60864004 60774015)+1 种基金 Disbursal Budget Program of Shanghai Municipal Education Commission of China (2008093) Innovation Program of Shanghai Municipal Education Commission of China (09YZ241)
基金This project was financially supported by the National Committee of Science and Technology Grants/903-85-08-05
文摘A three-dimensional, first order turbulence closure, thermal diffusion model is described in this paper. The governing equations consist of an equation of continuity, three components of momentum, conservation equations for salt, temperature and subgridscale energy, and an equation of state. In the model, according to the hypothesis of Kolmogorov and Prandtl, the viscosity coefficient of turbulent flow of homogeneous fluid is related to the local turbulent energy, and the horizontal and vertical exchange coefficients of mass, heat and momentum are computed with the introduction of subgridscale turbulence energy. The governing equations are solved by finite difference techniques. This model is applied to the Jiaozhou bay to predict thermal pollution by the Huangdao power plant. An instantaneous tidal current field is computed, then the distribution of temperature increment is predicted, and finally the effect of wind stress on thermal discharge is discussed.