期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Synthesis of three-dimensional ordered mesoporous MnO_2 and its catalytic performance in formaldehyde oxidation 被引量:20
1
作者 拜冰阳 乔琦 +1 位作者 李俊华 郝吉明 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期27-31,共5页
Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the ... Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation. 展开更多
关键词 three-dimensional ordered material Mesoporous structure Manganese oxide FORMALDEHYDE Catalytic oxidation
下载PDF
Three‑Dimensional Ordered Mesoporous Carbon Spheres Modified with Ultrafine Zinc Oxide Nanoparticles for Enhanced Microwave Absorption Properties 被引量:11
2
作者 Yan Song Fuxing Yin +3 位作者 Chengwei Zhang Weibing Guo Liying Han Ye Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期61-76,共16页
Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in ... Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials. 展开更多
关键词 three-dimensional ordered structure Mesoporous carbon spheres Zinc oxide nanoparticles Microwave absorption
下载PDF
Ultrasmall NiS_(2)Nanocrystals Embedded in Ordered Macroporous Graphenic Carbon Matrix for Efficiently Pseudocapacitive Sodium Storage 被引量:3
3
作者 Zhaozhao Liu Jiang Wang +7 位作者 Ran Bi Pinyi Zhao Mengqian Wu Xinyu Liu Likun Yin Chengyang Wang Mingming Chen Kemeng Ji 《Transactions of Tianjin University》 EI CAS 2023年第2期89-100,共12页
Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance betw... Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications. 展开更多
关键词 Sodium-ion battery Sodium-ion hybrid capacitor three-dimensionally ordered macroporous structure Graphenic carbon NiS_(2)nanocrystals
下载PDF
Fabrication of La1-xCaxFeO3 perovskite-type oxides with macro-mesoporous structure via a dual-template method for highly efficient soot combustion 被引量:2
4
作者 Minjie Zhao Jixing Liu +4 位作者 Jian Liu Junfeng Xu Zhen Zhao Yuechang Wei Weiyu Song 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第4期369-375,共7页
A series of three-dimensionally ordered macro-mesoporous(3DOMM)La1-xCaxFeO3(x=0-0.3)perovskite-type oxides were designed and successfully fabricated for the first time via a dual-template method.In which,PMMA and Brij... A series of three-dimensionally ordered macro-mesoporous(3DOMM)La1-xCaxFeO3(x=0-0.3)perovskite-type oxides were designed and successfully fabricated for the first time via a dual-template method.In which,PMMA and Brij-56 were employed as the hard template and soft template,respectively.It is found that 3 DOMM La1-xCaxFeO3 exhibits abundant wormlike mesoporous channels about 3 nm in diameter on macroporous skeleton walls.The excellent catalytic activity of soot combustion benefits from not only the well-designed hierarchical porous structure of catalyst,but also the redox electron pair of Fe3+/Fe4+induced by the doping of low-valent alkaline earth metal Ca to A-site of LaFeO3.3DOMM La0.8Ca0.2FeO3 exhibits superior catalytic performance for soot combustion,which shows T50 of396℃.It is 189℃lower than that without catalyst.A combination of structure and composition in the design of catalyst can be widely extended to other catalytic systems. 展开更多
关键词 three-dimensionally ordered macro-mesoporous structure PEROVSKITE-TYPE oxides LANTHANUM ferrite SOOT combustion Rare earths
原文传递
Enhanced photocatalytic performance of Bi_(4)O_(5)Br_(2)with threedimensionally ordered macroporous structure for phenol removal 被引量:1
5
作者 Kunfeng Zhang Hongxia Chen +3 位作者 Wenbo Pei Hongxing Dai Junshan Li Yongfa Zhu 《Nano Research》 SCIE EI CSCD 2023年第7期8871-8881,共11页
Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photoc... Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photocatalytic activity for phenol degradation over 3DOM Bi_(4)O_(5)Br_(2)first increased and then decreased with the rise in macropore size.Specifically,3DOM Bi_(4)O_(5)Br_(2)-255(macropore diameter ca.170 nm)exhibits the best photocatalytic activity in the static system,which is about 4.5,7.3,and 11.9 times higher than those of bulk Bi_(4)O_(5)Br_(2),Bi_(2)WO_(6),and g-C_(3)N_(4),respectively.Meanwhile,high phenol conversion(75%)is also obtained over 3DOM Bi_(4)O_(5)Br_(2)-255 in the flow system under full spectrum irradiation.Furthermore,3DOM Bi_(4)O_(5)Br_(2)-255 also shows strong mineralization capacity owing to the downward shift of valance band position(0.15 V)as compared with Bi_(4)O_(5)Br_(2).Total organic carbon(TOC)removal rate over 3DOM Bi_(4)O_(5)Br_(2)-255(62%)is much higher than that of Bi_(4)O_(5)Br_(2)(17%).The enhancement in photocatalytic performance of 3DOM Bi_(4)O_(5)Br_(2)-255 is attributable to its better phenol adsorption,O_(2)activation,and charge separation and transfer abilities.This work combines the advantages of 3D structure and surface dangling bonds,providing new possibilities for designing highly efficient photocatalysts for pollutants removal. 展开更多
关键词 three-dimensionally ordered macroporous structure Bi_(4)O_(5)Br_(2) O_(2)activation PHOTOCATALYSIS degradation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部