Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the ...Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.展开更多
Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in ...Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.展开更多
Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance betw...Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications.展开更多
A series of three-dimensionally ordered macro-mesoporous(3DOMM)La1-xCaxFeO3(x=0-0.3)perovskite-type oxides were designed and successfully fabricated for the first time via a dual-template method.In which,PMMA and Brij...A series of three-dimensionally ordered macro-mesoporous(3DOMM)La1-xCaxFeO3(x=0-0.3)perovskite-type oxides were designed and successfully fabricated for the first time via a dual-template method.In which,PMMA and Brij-56 were employed as the hard template and soft template,respectively.It is found that 3 DOMM La1-xCaxFeO3 exhibits abundant wormlike mesoporous channels about 3 nm in diameter on macroporous skeleton walls.The excellent catalytic activity of soot combustion benefits from not only the well-designed hierarchical porous structure of catalyst,but also the redox electron pair of Fe3+/Fe4+induced by the doping of low-valent alkaline earth metal Ca to A-site of LaFeO3.3DOMM La0.8Ca0.2FeO3 exhibits superior catalytic performance for soot combustion,which shows T50 of396℃.It is 189℃lower than that without catalyst.A combination of structure and composition in the design of catalyst can be widely extended to other catalytic systems.展开更多
Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photoc...Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photocatalytic activity for phenol degradation over 3DOM Bi_(4)O_(5)Br_(2)first increased and then decreased with the rise in macropore size.Specifically,3DOM Bi_(4)O_(5)Br_(2)-255(macropore diameter ca.170 nm)exhibits the best photocatalytic activity in the static system,which is about 4.5,7.3,and 11.9 times higher than those of bulk Bi_(4)O_(5)Br_(2),Bi_(2)WO_(6),and g-C_(3)N_(4),respectively.Meanwhile,high phenol conversion(75%)is also obtained over 3DOM Bi_(4)O_(5)Br_(2)-255 in the flow system under full spectrum irradiation.Furthermore,3DOM Bi_(4)O_(5)Br_(2)-255 also shows strong mineralization capacity owing to the downward shift of valance band position(0.15 V)as compared with Bi_(4)O_(5)Br_(2).Total organic carbon(TOC)removal rate over 3DOM Bi_(4)O_(5)Br_(2)-255(62%)is much higher than that of Bi_(4)O_(5)Br_(2)(17%).The enhancement in photocatalytic performance of 3DOM Bi_(4)O_(5)Br_(2)-255 is attributable to its better phenol adsorption,O_(2)activation,and charge separation and transfer abilities.This work combines the advantages of 3D structure and surface dangling bonds,providing new possibilities for designing highly efficient photocatalysts for pollutants removal.展开更多
基金supported by the National Natural Science Foundation of China(21325731,21221004 and 51478241)~~
文摘Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.
基金The authors are grateful of the financial support by the National Natural Science Foundation of China(51902083 and 21606068)the Foundation Strengthening Program(2019-JCJQ-142-00)the Higher Education Science and Technology Research Project of Hebei Province(ZD2019087).
文摘Currently,electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems.Thus,developing excellent microwave absorbers have a huge significance in the material research field.Herein,a kind of ultrafine zinc oxide(ZnO)nanoparticles(NPs)supported on three-dimensional(3D)ordered mesoporous carbon spheres(ZnO/OMCS)is prepared from silica inverse opal by using phenolic resol precursor as carbon source.The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres.ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption(−39.3 dB at 10.4 GHz with a small thickness of 2 mm)and a broad effective absorption bandwidth(9.1 GHz).The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure.This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.
基金supported by the National Natural Science Foundation of Tianjin(No.20JCQNJC01280)the National Natural Science Foundation of China(No.21905201)+1 种基金the support of the scientifi c research project from China Three Gorges Corporation(No.202103406)supported by Tohoku University and JSPS KAKENHI(No.JP16J06828).
文摘Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications.
基金Project supported by the National Natural Science Foundation of China(U1662103,21673290)Beijing Natural Science Foundation(2182060).
文摘A series of three-dimensionally ordered macro-mesoporous(3DOMM)La1-xCaxFeO3(x=0-0.3)perovskite-type oxides were designed and successfully fabricated for the first time via a dual-template method.In which,PMMA and Brij-56 were employed as the hard template and soft template,respectively.It is found that 3 DOMM La1-xCaxFeO3 exhibits abundant wormlike mesoporous channels about 3 nm in diameter on macroporous skeleton walls.The excellent catalytic activity of soot combustion benefits from not only the well-designed hierarchical porous structure of catalyst,but also the redox electron pair of Fe3+/Fe4+induced by the doping of low-valent alkaline earth metal Ca to A-site of LaFeO3.3DOMM La0.8Ca0.2FeO3 exhibits superior catalytic performance for soot combustion,which shows T50 of396℃.It is 189℃lower than that without catalyst.A combination of structure and composition in the design of catalyst can be widely extended to other catalytic systems.
基金This work was supported by the National Natural Science Foundation of China(Nos.22206102,21872077,and 21621003)the National Key Research and Development Program of China(No.2020YFA0710304)the China Postdoctoral Science Foundation(No.2021M700078).
文摘Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photocatalytic activity for phenol degradation over 3DOM Bi_(4)O_(5)Br_(2)first increased and then decreased with the rise in macropore size.Specifically,3DOM Bi_(4)O_(5)Br_(2)-255(macropore diameter ca.170 nm)exhibits the best photocatalytic activity in the static system,which is about 4.5,7.3,and 11.9 times higher than those of bulk Bi_(4)O_(5)Br_(2),Bi_(2)WO_(6),and g-C_(3)N_(4),respectively.Meanwhile,high phenol conversion(75%)is also obtained over 3DOM Bi_(4)O_(5)Br_(2)-255 in the flow system under full spectrum irradiation.Furthermore,3DOM Bi_(4)O_(5)Br_(2)-255 also shows strong mineralization capacity owing to the downward shift of valance band position(0.15 V)as compared with Bi_(4)O_(5)Br_(2).Total organic carbon(TOC)removal rate over 3DOM Bi_(4)O_(5)Br_(2)-255(62%)is much higher than that of Bi_(4)O_(5)Br_(2)(17%).The enhancement in photocatalytic performance of 3DOM Bi_(4)O_(5)Br_(2)-255 is attributable to its better phenol adsorption,O_(2)activation,and charge separation and transfer abilities.This work combines the advantages of 3D structure and surface dangling bonds,providing new possibilities for designing highly efficient photocatalysts for pollutants removal.