To develop the green polymeric membrane electrolyte,-Polycaprolactone(PCL)was used as a host and the Ionic liquid(IL)(1-Ethyl-3-methylimidazolium tosylate)as a dopant.The IL is a source of mobile charges in the polyme...To develop the green polymeric membrane electrolyte,-Polycaprolactone(PCL)was used as a host and the Ionic liquid(IL)(1-Ethyl-3-methylimidazolium tosylate)as a dopant.The IL is a source of mobile charges in the polymer electrolyte system.The composite membrane has been prepared by Hot Press method and then we characterised this membrane for ionic transportation.Formation of nanocomposite system has been ascertained from their XRD pattern.Interaction phenomenon was studied by ATR based FTIR and Laser Raman spectroscopic technique.Variation of conductivity with composition and temperature was studied with the aid of impedance spectroscopy data.展开更多
To analyze fracture mechanism of propellant grain and study the mechanical properties of propellant grain, the press and fracture processes of propellant grain with and without initial defects are modeled using the di...To analyze fracture mechanism of propellant grain and study the mechanical properties of propellant grain, the press and fracture processes of propellant grain with and without initial defects are modeled using the discrete element method. On the basis of the appropriate constitutive relationships, the discrete element model of the propellant grain was established. Compared with experimental measurements, the micro-parameters of the bonded-particle model of the propellant grain under unconfined uniaxial compression tests were calibrated. The propellant grains without initial defects, with initial surface defects, and with initial internal defects were studied numerically through a series of unconfined uniaxial compression tests. Results show that the established discrete element model is an efficient tool to study the press and fracture processes of the propellant grain. The fracture process of the propellant grain without initial defects can be divided into the elastic deformation phase, crack initiation phase, crack stable propagation phase, and crack unstable propagation phase. The fracture mechanism of this grain is the global shear failure along the direction of the maximum shear stress. Initial defects have significant effects on both the fracture mechanism and peak strength of the propellant grain. The major fracture mechanism of the propellant grain with initial surface defects is local shear failure, whereas that of the propellant grain with initial internal defects is global tensile failure. Both defects weaken the peak strengths of the propellant grain. Therefore, the carrying and filling process of the propellant grain needs to minimize initial defects as far as possible.展开更多
Equal channel angular pressing (ECAP) is an attractive process method to produce bulk uhra-fine grained materials. There are many experiment evidences showing that the nature of the microstructural evolution in mult...Equal channel angular pressing (ECAP) is an attractive process method to produce bulk uhra-fine grained materials. There are many experiment evidences showing that the nature of the microstructural evolution in multi-pass ECAP depends on process routes. Isothermal three dimensional FEM simulations for muhi-pass ECAP were performed using DEFORM3D finite element code. The material model of 6061A1-T6 was employed. Flow nets, effective strain distribution in the workpiece and loads during multi-pass ECAP using different routes were analysed respectively, The simulations show process routes influence material flow and effective strain distri- bution in the workpiece obviously but have few influence on loads.展开更多
High-purity Ti2AlN ceramic was prepared at 1300 ℃ by hot pressing(HP)of Ti/Al/TiN powders in stoichiometric proportion.The sintered product was characterized using X-ray diffraction(XRD)and MDI Jade 5.0 software(Mate...High-purity Ti2AlN ceramic was prepared at 1300 ℃ by hot pressing(HP)of Ti/Al/TiN powders in stoichiometric proportion.The sintered product was characterized using X-ray diffraction(XRD)and MDI Jade 5.0 software(Materials Data Inc,Liverpool,CA).Scanning electron microscopy(SEM)and electron probe micro-analysis(EPMA)coupled with energy-dispersive spectroscopy(EDS)were utilized to investigate the morphology characteristics.The results show that Ti2AlN phase is well-developed with a close and lamellar structure.The grains are plate-like with the size of 3-5 μm,thickness of 8-10 μm and elongated dimension.The density of Ti2AlN is measured to be 4.22 g/cm3,which reaches 97.9% of its theory value.The distribution of Ti2AlN grains is homogeneous.展开更多
Polycrystalline bulk Ti3AlC2 material with high purity and density was fabricated by hot pressing from the powder mixture with the starting stoichiometric mole ratios of 2.0TiC/ 1.0Ti/ 1.1A1/ 0.1Si at 1 300-1 500℃. X...Polycrystalline bulk Ti3AlC2 material with high purity and density was fabricated by hot pressing from the powder mixture with the starting stoichiometric mole ratios of 2.0TiC/ 1.0Ti/ 1.1A1/ 0.1Si at 1 300-1 500℃. X-ray diffraction patterns and scanning electron microscopy photographs of the fully dense samples indicate that the proper addition of silicon is favorable to the formation of Ti3AlC2, consequently results in high purity of the prepared samples. The Ti3AlC2 hot pressed at 1 300℃and 1 400℃is in plane-shape with sizes of 6-8μm and 15-20μm in the elongated dimension, respectively. The purities of samples are measured by the K-value method, and the contents of TiC are given by a linear equation.展开更多
Press forging of rectangular box of magnesium alloy AZ31 sheets was investigated at elevated temperatures.The characteristics of metal flow were analyzed on the basis of finite element method(FEM) and experiments.Effe...Press forging of rectangular box of magnesium alloy AZ31 sheets was investigated at elevated temperatures.The characteristics of metal flow were analyzed on the basis of finite element method(FEM) and experiments.Effects of friction factor and sidewall thickness on metal flow and boss forming were investigated by FEM.The results indicate that the bosses and the sidewall of the rectangular box are formed unevenly due to the uneven flow of the metal.The increase in friction factor at die/sheet interface improves the metal flow pattern and the efficiency of boss forming,but reduces the sidewall uniformity.Decrease in sidewall thickness enhances boss forming efficiency,whereas the punch load increases in this case.The present work can provide reasonable parameters and design guideline for the practical press forging process of magnesium alloy sheets.展开更多
The forming pressure is calculated by utilizing the slab method and the variation principles and influence factors of inside diameter in thin wall tube press expansion are analyzed.The results of theoretical analysis...The forming pressure is calculated by utilizing the slab method and the variation principles and influence factors of inside diameter in thin wall tube press expansion are analyzed.The results of theoretical analysis are well agree with the experiments.The conclusion is valuable to product quality control in the actual manufacturing.展开更多
In order to obtain a basic understanding of the unwanted distortions in the pipe wall during the press cutting process, the deformation of a thin-walled round pipe to form a curvilinear end was numerically and experim...In order to obtain a basic understanding of the unwanted distortions in the pipe wall during the press cutting process, the deformation of a thin-walled round pipe to form a curvilinear end was numerically and experimentally studied. Vector analysis was used to study the relationship between the punch shape and the collapse of the cut-end. Stamping experiments on AISI 1020 steel pipe were conducted using different angles a and β defining the shape of the punch. The elasto-plastic finite element method that allows consideration of a ductile fracture was also employed to study the process. The results show that the deformation of the pipe end after press cutting is inβuenced mostly by the shape of the punch. A satisfactory quality of the curvilinear end of the pipe can be obtained if the appropriate geometric parameters of the punch are chosen. The pipe-wall collapse in the upper part of the section is decreased when a and β increase. The recommended values for a and β lie within 30°-50°. The hole on the underside of the punch has less inβuence on the quality of the cut-end, and the wall distortion and the generation of burr on the cut-end can be satisfactorily simulated using the fracture criterion of Brozzo or the normalized criterion of Cockcroft and Latham.展开更多
Effects of various sintering methods such as spark plasma sintering(SPS), hot pressing(HP) and electric resistance sintering(ERS) on the microstructure and mechanical properties of commercial pure titanium(CP-Ti) powd...Effects of various sintering methods such as spark plasma sintering(SPS), hot pressing(HP) and electric resistance sintering(ERS) on the microstructure and mechanical properties of commercial pure titanium(CP-Ti) powder consolidations with particle size of <147 μm, <74 μm and <43 μm were studied. The smaller particle powders are densified to proceed at a higher rate. Dense titanium with relative density up to 99% is found to take place at 850 °C under 30 MPa of SPS and HP condition. However, in case of ERS, CP-Ti powders were densified almost at 950 °C under 30 MPa. The microstructure of sintered titanium is composed of equiaxed grains at 850-950 °C. The yield strength of sintered body composed of <43 μm powder is 858 MPa by using SPS at 850 °C under 30 MPa. When there is a higher content of small particle, the higher yield strength value is obtained both by using SPS and HP. However, when ERS is introduced, the highest yield strength is 441 MPa at 950 °C under 30 MPa, which shows much lower values than those by SPS and HP methods. ERS method takes much less sintering time compared with SPS and HP. Nevertheless, higher sintering temperature results in lower strength and elongation because of brittle fracture.展开更多
The DSC(direct self control) of speed regulation technology was applied to drive a motor running at a certain overloading ratio in intermittent working conditions.To control motor temperatures rising effectively,a fin...The DSC(direct self control) of speed regulation technology was applied to drive a motor running at a certain overloading ratio in intermittent working conditions.To control motor temperatures rising effectively,a finite element method with an iterative approach was applied to simulate real working conditions and analyze the temperature rising of the inner part of the motor.Application of DSC speed regulation realizes the invariable torque output quickly and avoids the peak current at the start state in favor of the motor temperature decreasing.Based on an analysis with the finite limit method,some effective measures were taken to improve the ability of the motor to expel heat.The overload ability of the motor was improved and the stable motor temperature rising was obtained,fulfilling the demands of electrical screw presses.展开更多
This paper includes descriptions of the stress distribution regularities in the tight joint parts, regularities of the stress state changes in the contact region along coupling length, stress concentration factors, le...This paper includes descriptions of the stress distribution regularities in the tight joint parts, regularities of the stress state changes in the contact region along coupling length, stress concentration factors, levels of additional stresses caused by press fitting. Distributions of stress intensity, axial stress, contact pressure, tangent stress in parts and in contact zone along coupling length are considered. Calculation results obtained by three approaches: Lame relationships, FEM without considering assembly method, FEM with considering press fitting process are analyzed and compared. The adequacy of research carried out is confirmed.展开更多
The hot pressing process parameters were optimized to prepare flax fiber reinforced polyethylene(PE)thermoplastic composite by the Taguchi method.The optimal hot pressing process parameters were determined to increase...The hot pressing process parameters were optimized to prepare flax fiber reinforced polyethylene(PE)thermoplastic composite by the Taguchi method.The optimal hot pressing process parameters were determined to increase the tensile strength of the composite.The optimal parameters of the design include the following sections:hot pressing temperature,pressure,hot pressing time and coupling agent modification time.An L9(3*4)orthogonal matrix based on the Taguchi method was created.By means of analysis of signal-to-noise ratio and analysis of variance,the optimal hot pressing process parameters combination was found,compared to the average tensile strength in the nine design experiments,and the tensile strength was improved nearly 10%.展开更多
文摘To develop the green polymeric membrane electrolyte,-Polycaprolactone(PCL)was used as a host and the Ionic liquid(IL)(1-Ethyl-3-methylimidazolium tosylate)as a dopant.The IL is a source of mobile charges in the polymer electrolyte system.The composite membrane has been prepared by Hot Press method and then we characterised this membrane for ionic transportation.Formation of nanocomposite system has been ascertained from their XRD pattern.Interaction phenomenon was studied by ATR based FTIR and Laser Raman spectroscopic technique.Variation of conductivity with composition and temperature was studied with the aid of impedance spectroscopy data.
基金The National Key Research and Development Program of China(No.2018YFD1100401-04)the National Natural Science Foundation of China(No.11772091)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.CE01-2)the Open Research Fund Program of Jiangsu Key Laboratory of Engineering M echanics(No.LEM16A08)
文摘To analyze fracture mechanism of propellant grain and study the mechanical properties of propellant grain, the press and fracture processes of propellant grain with and without initial defects are modeled using the discrete element method. On the basis of the appropriate constitutive relationships, the discrete element model of the propellant grain was established. Compared with experimental measurements, the micro-parameters of the bonded-particle model of the propellant grain under unconfined uniaxial compression tests were calibrated. The propellant grains without initial defects, with initial surface defects, and with initial internal defects were studied numerically through a series of unconfined uniaxial compression tests. Results show that the established discrete element model is an efficient tool to study the press and fracture processes of the propellant grain. The fracture process of the propellant grain without initial defects can be divided into the elastic deformation phase, crack initiation phase, crack stable propagation phase, and crack unstable propagation phase. The fracture mechanism of this grain is the global shear failure along the direction of the maximum shear stress. Initial defects have significant effects on both the fracture mechanism and peak strength of the propellant grain. The major fracture mechanism of the propellant grain with initial surface defects is local shear failure, whereas that of the propellant grain with initial internal defects is global tensile failure. Both defects weaken the peak strengths of the propellant grain. Therefore, the carrying and filling process of the propellant grain needs to minimize initial defects as far as possible.
基金The National Natural Science Foundation of China(No50474028)
文摘Equal channel angular pressing (ECAP) is an attractive process method to produce bulk uhra-fine grained materials. There are many experiment evidences showing that the nature of the microstructural evolution in multi-pass ECAP depends on process routes. Isothermal three dimensional FEM simulations for muhi-pass ECAP were performed using DEFORM3D finite element code. The material model of 6061A1-T6 was employed. Flow nets, effective strain distribution in the workpiece and loads during multi-pass ECAP using different routes were analysed respectively, The simulations show process routes influence material flow and effective strain distri- bution in the workpiece obviously but have few influence on loads.
基金Project(50572080)supported by the National Natural Science Foundation of ChinaProject(SYSJJ2005-04)supported by the Open Foundation of Key Laboratory of Silicate Materials Science and Engineering(Wuhan University of Technology),Ministry of Education
文摘High-purity Ti2AlN ceramic was prepared at 1300 ℃ by hot pressing(HP)of Ti/Al/TiN powders in stoichiometric proportion.The sintered product was characterized using X-ray diffraction(XRD)and MDI Jade 5.0 software(Materials Data Inc,Liverpool,CA).Scanning electron microscopy(SEM)and electron probe micro-analysis(EPMA)coupled with energy-dispersive spectroscopy(EDS)were utilized to investigate the morphology characteristics.The results show that Ti2AlN phase is well-developed with a close and lamellar structure.The grains are plate-like with the size of 3-5 μm,thickness of 8-10 μm and elongated dimension.The density of Ti2AlN is measured to be 4.22 g/cm3,which reaches 97.9% of its theory value.The distribution of Ti2AlN grains is homogeneous.
文摘Polycrystalline bulk Ti3AlC2 material with high purity and density was fabricated by hot pressing from the powder mixture with the starting stoichiometric mole ratios of 2.0TiC/ 1.0Ti/ 1.1A1/ 0.1Si at 1 300-1 500℃. X-ray diffraction patterns and scanning electron microscopy photographs of the fully dense samples indicate that the proper addition of silicon is favorable to the formation of Ti3AlC2, consequently results in high purity of the prepared samples. The Ti3AlC2 hot pressed at 1 300℃and 1 400℃is in plane-shape with sizes of 6-8μm and 15-20μm in the elongated dimension, respectively. The purities of samples are measured by the K-value method, and the contents of TiC are given by a linear equation.
文摘Press forging of rectangular box of magnesium alloy AZ31 sheets was investigated at elevated temperatures.The characteristics of metal flow were analyzed on the basis of finite element method(FEM) and experiments.Effects of friction factor and sidewall thickness on metal flow and boss forming were investigated by FEM.The results indicate that the bosses and the sidewall of the rectangular box are formed unevenly due to the uneven flow of the metal.The increase in friction factor at die/sheet interface improves the metal flow pattern and the efficiency of boss forming,but reduces the sidewall uniformity.Decrease in sidewall thickness enhances boss forming efficiency,whereas the punch load increases in this case.The present work can provide reasonable parameters and design guideline for the practical press forging process of magnesium alloy sheets.
文摘The forming pressure is calculated by utilizing the slab method and the variation principles and influence factors of inside diameter in thin wall tube press expansion are analyzed.The results of theoretical analysis are well agree with the experiments.The conclusion is valuable to product quality control in the actual manufacturing.
基金Project(CDJZR10110029)supported by the Fundamental Research Funds for the Central Universities in China
文摘In order to obtain a basic understanding of the unwanted distortions in the pipe wall during the press cutting process, the deformation of a thin-walled round pipe to form a curvilinear end was numerically and experimentally studied. Vector analysis was used to study the relationship between the punch shape and the collapse of the cut-end. Stamping experiments on AISI 1020 steel pipe were conducted using different angles a and β defining the shape of the punch. The elasto-plastic finite element method that allows consideration of a ductile fracture was also employed to study the process. The results show that the deformation of the pipe end after press cutting is inβuenced mostly by the shape of the punch. A satisfactory quality of the curvilinear end of the pipe can be obtained if the appropriate geometric parameters of the punch are chosen. The pipe-wall collapse in the upper part of the section is decreased when a and β increase. The recommended values for a and β lie within 30°-50°. The hole on the underside of the punch has less inβuence on the quality of the cut-end, and the wall distortion and the generation of burr on the cut-end can be satisfactorily simulated using the fracture criterion of Brozzo or the normalized criterion of Cockcroft and Latham.
基金Project(K0004130) supported by the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy,Korea
文摘Effects of various sintering methods such as spark plasma sintering(SPS), hot pressing(HP) and electric resistance sintering(ERS) on the microstructure and mechanical properties of commercial pure titanium(CP-Ti) powder consolidations with particle size of <147 μm, <74 μm and <43 μm were studied. The smaller particle powders are densified to proceed at a higher rate. Dense titanium with relative density up to 99% is found to take place at 850 °C under 30 MPa of SPS and HP condition. However, in case of ERS, CP-Ti powders were densified almost at 950 °C under 30 MPa. The microstructure of sintered titanium is composed of equiaxed grains at 850-950 °C. The yield strength of sintered body composed of <43 μm powder is 858 MPa by using SPS at 850 °C under 30 MPa. When there is a higher content of small particle, the higher yield strength value is obtained both by using SPS and HP. However, when ERS is introduced, the highest yield strength is 441 MPa at 950 °C under 30 MPa, which shows much lower values than those by SPS and HP methods. ERS method takes much less sintering time compared with SPS and HP. Nevertheless, higher sintering temperature results in lower strength and elongation because of brittle fracture.
基金the Natural Science Foundation of Hubei Province (No.2004AA101E04)
文摘The DSC(direct self control) of speed regulation technology was applied to drive a motor running at a certain overloading ratio in intermittent working conditions.To control motor temperatures rising effectively,a finite element method with an iterative approach was applied to simulate real working conditions and analyze the temperature rising of the inner part of the motor.Application of DSC speed regulation realizes the invariable torque output quickly and avoids the peak current at the start state in favor of the motor temperature decreasing.Based on an analysis with the finite limit method,some effective measures were taken to improve the ability of the motor to expel heat.The overload ability of the motor was improved and the stable motor temperature rising was obtained,fulfilling the demands of electrical screw presses.
文摘This paper includes descriptions of the stress distribution regularities in the tight joint parts, regularities of the stress state changes in the contact region along coupling length, stress concentration factors, levels of additional stresses caused by press fitting. Distributions of stress intensity, axial stress, contact pressure, tangent stress in parts and in contact zone along coupling length are considered. Calculation results obtained by three approaches: Lame relationships, FEM without considering assembly method, FEM with considering press fitting process are analyzed and compared. The adequacy of research carried out is confirmed.
基金This work was supported by the National Natural Science Foundation of China(NSFC)[grant nos.51605076,51875079]the Fundamental Research Funds for the Central Universities[grant no.DUT18LAB18].
文摘The hot pressing process parameters were optimized to prepare flax fiber reinforced polyethylene(PE)thermoplastic composite by the Taguchi method.The optimal hot pressing process parameters were determined to increase the tensile strength of the composite.The optimal parameters of the design include the following sections:hot pressing temperature,pressure,hot pressing time and coupling agent modification time.An L9(3*4)orthogonal matrix based on the Taguchi method was created.By means of analysis of signal-to-noise ratio and analysis of variance,the optimal hot pressing process parameters combination was found,compared to the average tensile strength in the nine design experiments,and the tensile strength was improved nearly 10%.