Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at...Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.展开更多
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th...This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.展开更多
As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a succes...As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.展开更多
In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of...In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of massive MIMO in 5G,the number of antennas increases by hundreds or even thousands times,which leads to excessive feedback overhead and poses a huge challenge to the conventional channel state information feedback scheme.In this paper,by using deep learning technology,we develop a system framework for CSI feedback based on fully connected feedforward neural networks(FCFNN),named CF-FCFNN.Through learning the training set composed of CSI,CF-FCFNN is able to recover the original CSI from the compressed CSI more accurately compared with the existing method based on deep learning without increasing the algorithm complexity.展开更多
Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, a...Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, assuming that the training examples are input in a stochastic way. The monotonicity of the error function in the iteration and the boundedness of the weight are both guaranteed. We also present a numerical experiment to support our results.展开更多
As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. A...As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.展开更多
The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To a...The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.展开更多
Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatograph...Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatography method for simultaneous determination of 5-hydroxymethylfurfural,2 phenolic acids and 4 iridoid glycosides and the reference fingerprint of cornus from different regions.In addition,the feedforward neural network model provided a pattern classification of sample regions.Results:The content of morroniside and loganin were the highest in all raw cornus samples ranging from 9.45μg/mg to 16.3μg/mg and 6.64μg/mg to 13.7μg/mg,respectively.The level of sweroside in raw cornus from Henan(0.83μg/mg^(-1).39μg/mg)and Zhejiang(0.64μg/mg^(-1).17μg/mg)were greater than other origins.After wine-processing,the glucose or fructose were dehydrated to increase the levels of 5-hydroxymethylfurfural.The C-4 position of-COOCH3 of hot-sensitive iridoid glycosides was hydrolyzed to generate-COOH as stable components.Polyphenol derivatives may be degraded to increase the content of phenolic acid.Subsequently,an excellent feedforward neural network model for identification of raw cornus and wine-prepared cornus was established which could distinguish the sample origins.Conclusion:This work provided a trustworthy method to evaluate the quality and distinguish the sources of cornus.Meanwhile,the clear processing mechanism provided a scientific foundation for controlling the cornus quality during wine-processing.展开更多
Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such a...Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts.The development of machine and deep learning algorithms has reduced the burden of achieving reli-able and good communication schemes in the underwater acoustic environment.This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA),Time Divi-sion Multiple Access(TDMA),and Orthogonal Frequency Division Multiplexing(OFDM)techniques using the hybrid combination of the convolutional neural net-works(CNN)and ensemble single feedforward layers(SFL).The convolutional neural networks are used for channel feature extraction,and boosted ensembled feedforward layers are used for modulation selection based on the CNN outputs.The extensive experimentation is carried out and compared with other hybrid learning models and conventional methods.Simulation results demonstrate that the performance of the proposed hybrid learning model has achieved nearly 98%accuracy and a 30%increase in BER performance which outperformed the other learning models in achieving the communication schemes under dynamic underwater environments.展开更多
Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the impl...Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the implementation of the network by electronic circuits. In this paper we introduce a punishing term into the error function of the training procedure to prevent this situation. The corresponding convergence of the iterative training procedure and the boundedness of the weight sequence are proved. A supporting numerical example is also provided.展开更多
In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes...In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.展开更多
A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation func...A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.展开更多
The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neu...The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neural networks to assist in Arabic Sign Language (ArSL) hand gesture recognition. We have presented the use of feedforward neural networks and recurrent neural networks along with its different architectures;partially and fully recurrent networks. Then we have tested our proposed system;the results of the experiment have showed that the suggested system with the fully recurrent architecture has had a performance with an accuracy rate 95% for static gesture recognition.展开更多
Artificial Neural Networks(ANNs)are used in numerous engineering and scientific disciplines as an automated approach to resolve a number of problems.However,to build an artificial neural network that is prudent enough...Artificial Neural Networks(ANNs)are used in numerous engineering and scientific disciplines as an automated approach to resolve a number of problems.However,to build an artificial neural network that is prudent enough to rely on,vast quantities of relevant data have to be fed.In this study,we analysed the scope of artificial neural networks in geothermal reservoir architecture.In particular,we attempted to solve joint inversion problem through Feedforward Neural Network(FNN)technique.In order to identify geothermal sweet spots in the subsurface,an extensive geophysical studies were conducted in Gandhar area of Gujarat,India.The data were acquired along six profile lines for gravity,magnetics and magnetotellurics.Initially low velocity zone was identified using refraction seismic technique in order to set a common datum level for other potential data.The depth of low velocity zone in Gandhar was identified at 11 m.The FNN backpropagation method was applied to gain the global minima of the data space and model space as desired.The input dataset fed to the inversion algorithm in the form of gravity,magnetic susceptibility and resistivity helped to predict the suitable model after network training in multiple steps.The joint inversion of data is conducive to understanding the subsurface geological and lithological features along with probable geothermal sweet spots.The results of this study show the geothermal sweet spots at depth ranging from 200 m to 300 m.The results from our study can be used for targeted zones for geothermal water exploitation.展开更多
A hybrid algorithm to design the multi layer feedforward neural network was proposed. Evolutionary programming is used to design the network that makes the training process tending to global optima. Artificial immunol...A hybrid algorithm to design the multi layer feedforward neural network was proposed. Evolutionary programming is used to design the network that makes the training process tending to global optima. Artificial immunology combined with simulated annealing algorithm is used to specify the initial weight vectors, therefore improves the probabiligy of training algorithm to converge to global optima. The applications of the neural network in the modulation style recognition of analog modulated rader signals demonstrate the good performance of the network.展开更多
This paper proposes a neural network-based intelligent feedforward gust alleviation framework,which includes a neural network identification model and a neural network controller.A neural network training dataset is f...This paper proposes a neural network-based intelligent feedforward gust alleviation framework,which includes a neural network identification model and a neural network controller.A neural network training dataset is formed by collecting flight data and the gust data encountered during the aircraft flight.A neural network identification model is first trained to accurately predict the aircraft’s output.Then,based on the output of the identification model and the collected flight data,the parameters of the time-delay neural network controller are obtained through a learning process.The simulation results show that the designed intelligent controller has good gust alleviation effects for both continuous turbulence excitation and discrete gust excitation.For example,when the aircraft is 40000 kg and the flight speed is 0.81Ma,the controller achieves a 67.82%reduction in wingtip acceleration and a 35.90%reduction in center of mass acceleration under continuous turbulence excitation.When considering the measurement uncertainties,such as noise existing in the collected data,the trained controller can still achieve an acceptable gust alleviation effect.Finally,considering a flight in which the aircraft mass is constantly changing,the intelligent controller,which continuously learns from new flight data,maintains a good gust alleviation effect throughout the flight.展开更多
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu...General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.展开更多
Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,th...Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.展开更多
基金the National Natural Science Foundation of China under Grant(42274119)the Liaoning Revitalization Talents Program under Grant(XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.
文摘This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.
基金National Natural Science Foundation of China!(No.6 97740 33)
文摘As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.
基金This work was supported by the Key Research and Development Project of Shaanxi Province under Grant no.2019ZDLGY07-07.
文摘In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of massive MIMO in 5G,the number of antennas increases by hundreds or even thousands times,which leads to excessive feedback overhead and poses a huge challenge to the conventional channel state information feedback scheme.In this paper,by using deep learning technology,we develop a system framework for CSI feedback based on fully connected feedforward neural networks(FCFNN),named CF-FCFNN.Through learning the training set composed of CSI,CF-FCFNN is able to recover the original CSI from the compressed CSI more accurately compared with the existing method based on deep learning without increasing the algorithm complexity.
基金Partly supported by the National Natural Science Foundation of China,and the Basic Research Program of the Committee of ScienceTechnology and Industry of National Defense of China.
文摘Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, assuming that the training examples are input in a stochastic way. The monotonicity of the error function in the iteration and the boundedness of the weight are both guaranteed. We also present a numerical experiment to support our results.
文摘As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.
基金This work was funded by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07201003)the National Natural Science Foundation of China(51961125101)the Science and Technology Project of Zhejiang Province(2018C03003).
文摘The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.
基金supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine.(No.ZYYCXTD-D-202005)the Key Project at Central Government Level(No.2060302)+1 种基金the National Natural Science Foundation of China Grants(No.81872956)Tianjin Science and Technology Planning Project(No.19YFZCSY00170).
文摘Background:To promote the quality evaluation,clarify the processing mechanism and distinguish origins of Corni Fructus(cornus)from different regions.Methods:This study developed a high performance liquid chromatography method for simultaneous determination of 5-hydroxymethylfurfural,2 phenolic acids and 4 iridoid glycosides and the reference fingerprint of cornus from different regions.In addition,the feedforward neural network model provided a pattern classification of sample regions.Results:The content of morroniside and loganin were the highest in all raw cornus samples ranging from 9.45μg/mg to 16.3μg/mg and 6.64μg/mg to 13.7μg/mg,respectively.The level of sweroside in raw cornus from Henan(0.83μg/mg^(-1).39μg/mg)and Zhejiang(0.64μg/mg^(-1).17μg/mg)were greater than other origins.After wine-processing,the glucose or fructose were dehydrated to increase the levels of 5-hydroxymethylfurfural.The C-4 position of-COOCH3 of hot-sensitive iridoid glycosides was hydrolyzed to generate-COOH as stable components.Polyphenol derivatives may be degraded to increase the content of phenolic acid.Subsequently,an excellent feedforward neural network model for identification of raw cornus and wine-prepared cornus was established which could distinguish the sample origins.Conclusion:This work provided a trustworthy method to evaluate the quality and distinguish the sources of cornus.Meanwhile,the clear processing mechanism provided a scientific foundation for controlling the cornus quality during wine-processing.
文摘Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts.The development of machine and deep learning algorithms has reduced the burden of achieving reli-able and good communication schemes in the underwater acoustic environment.This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA),Time Divi-sion Multiple Access(TDMA),and Orthogonal Frequency Division Multiplexing(OFDM)techniques using the hybrid combination of the convolutional neural net-works(CNN)and ensemble single feedforward layers(SFL).The convolutional neural networks are used for channel feature extraction,and boosted ensembled feedforward layers are used for modulation selection based on the CNN outputs.The extensive experimentation is carried out and compared with other hybrid learning models and conventional methods.Simulation results demonstrate that the performance of the proposed hybrid learning model has achieved nearly 98%accuracy and a 30%increase in BER performance which outperformed the other learning models in achieving the communication schemes under dynamic underwater environments.
文摘Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the implementation of the network by electronic circuits. In this paper we introduce a punishing term into the error function of the training procedure to prevent this situation. The corresponding convergence of the iterative training procedure and the boundedness of the weight sequence are proved. A supporting numerical example is also provided.
基金Project (No. 40328001) supported by the National Science Fund forOutstanding Youth Overseas China
文摘In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.
基金Supported by the National Natural Science Foundatipn of China (No. 59977019).
文摘A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.
文摘The objective of this research is to introduce the use of different types of neural networks in human hand gesture recognition for static images as well as for dynamic gestures. This work focuses on the ability of neural networks to assist in Arabic Sign Language (ArSL) hand gesture recognition. We have presented the use of feedforward neural networks and recurrent neural networks along with its different architectures;partially and fully recurrent networks. Then we have tested our proposed system;the results of the experiment have showed that the suggested system with the fully recurrent architecture has had a performance with an accuracy rate 95% for static gesture recognition.
文摘Artificial Neural Networks(ANNs)are used in numerous engineering and scientific disciplines as an automated approach to resolve a number of problems.However,to build an artificial neural network that is prudent enough to rely on,vast quantities of relevant data have to be fed.In this study,we analysed the scope of artificial neural networks in geothermal reservoir architecture.In particular,we attempted to solve joint inversion problem through Feedforward Neural Network(FNN)technique.In order to identify geothermal sweet spots in the subsurface,an extensive geophysical studies were conducted in Gandhar area of Gujarat,India.The data were acquired along six profile lines for gravity,magnetics and magnetotellurics.Initially low velocity zone was identified using refraction seismic technique in order to set a common datum level for other potential data.The depth of low velocity zone in Gandhar was identified at 11 m.The FNN backpropagation method was applied to gain the global minima of the data space and model space as desired.The input dataset fed to the inversion algorithm in the form of gravity,magnetic susceptibility and resistivity helped to predict the suitable model after network training in multiple steps.The joint inversion of data is conducive to understanding the subsurface geological and lithological features along with probable geothermal sweet spots.The results of this study show the geothermal sweet spots at depth ranging from 200 m to 300 m.The results from our study can be used for targeted zones for geothermal water exploitation.
文摘A hybrid algorithm to design the multi layer feedforward neural network was proposed. Evolutionary programming is used to design the network that makes the training process tending to global optima. Artificial immunology combined with simulated annealing algorithm is used to specify the initial weight vectors, therefore improves the probabiligy of training algorithm to converge to global optima. The applications of the neural network in the modulation style recognition of analog modulated rader signals demonstrate the good performance of the network.
文摘This paper proposes a neural network-based intelligent feedforward gust alleviation framework,which includes a neural network identification model and a neural network controller.A neural network training dataset is formed by collecting flight data and the gust data encountered during the aircraft flight.A neural network identification model is first trained to accurately predict the aircraft’s output.Then,based on the output of the identification model and the collected flight data,the parameters of the time-delay neural network controller are obtained through a learning process.The simulation results show that the designed intelligent controller has good gust alleviation effects for both continuous turbulence excitation and discrete gust excitation.For example,when the aircraft is 40000 kg and the flight speed is 0.81Ma,the controller achieves a 67.82%reduction in wingtip acceleration and a 35.90%reduction in center of mass acceleration under continuous turbulence excitation.When considering the measurement uncertainties,such as noise existing in the collected data,the trained controller can still achieve an acceptable gust alleviation effect.Finally,considering a flight in which the aircraft mass is constantly changing,the intelligent controller,which continuously learns from new flight data,maintains a good gust alleviation effect throughout the flight.
基金Tianjin Natural Science Foundation !983602011National 863/CIMS Research Foundation !863-511-945-010
文摘General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.
基金supported by the Natural Science Foundation of Jilin Province (No. 20220101017JC)the National Natural Science Foundation of China (Nos. 11675063, 11875070, and 11935001)+1 种基金Key Laboratory of Nuclear Data foundation (JCKY2020201C157)the Anhui Project (Z010118169)
文摘Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.