The parabolized stability equations (PSEs) for high speed flows, especially supersonic and hypersonic flows, are derived and used to analyze the nonparallel boundary layer stability. The proposed numerical technique...The parabolized stability equations (PSEs) for high speed flows, especially supersonic and hypersonic flows, are derived and used to analyze the nonparallel boundary layer stability. The proposed numerical techniques for solving PSE include the following contents: introducing the efficiently normal transformation of the boundary layer, improving the computational accuracy by using a high-order differential scheme near the wall, employing the predictor-corrector and iterative approach to satisfy the important normalization condition, and implementing the stable spatial marching. Since the second mode dominates the growth of the disturbance in high Mach number flows, it is used in the computation. The evolution and characteristics of the boundary layer stability in the high speed flow are demonstrated in the examples. The effects of the nonparallelizm, the compressibility and the cooling wall on the stability are analyzed. And computational results are in good agreement with the relevant data.展开更多
A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to...A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to the fixed outer casing. Computational models with/without the tip clearance are built and the κ-ω shear stress transport (SST) turbulence model and the unstructured mesh are applied to the numerical simulation for unsteady solutions. The overall performance is measured on a standard experimental bench and the major flow feature of each component inside the centrifugal fan is numerically investigated. In the presence of the tip clearance due to the difference of static pressure between leading and trailing edges of the clearance, i. e. , leading and trailing edges of the impeller, a strong return flow exists inside the clearance passage and re-circulates the main stream inside the impeller passage, and produces the strong flow interaction, thus changing the flow field and influencing the overall performance.展开更多
For the control of surface defects in interstitial-free(IF) steel, quantitative metallographic analyses of near-surface inclusions and surface liquid flow detection via the nail-board tipping method were conducted. Th...For the control of surface defects in interstitial-free(IF) steel, quantitative metallographic analyses of near-surface inclusions and surface liquid flow detection via the nail-board tipping method were conducted. The results show that, at casting speeds of 0.8 and 1.0 m/min, a thin liquid mold flux layer forms and non-uniform floating of argon bubbles occurs, inducing the entrainment and subsequent entrapment of the liquid flux; fine inclusion particles of Al_2O_3 can also aggregate at the solidification front. At higher casting speeds of 1.4 and 1.6 m/min, the liquid mold flux can be entrained and carried deeper into the liquid steel pool because of strong level fluctuations of the liquid steel and the flux. The optimal casting speed is approximately 1.2 m/min, with the most favorable surface flow status and, correspondingly, the lowest number of inclusions near the slab surface.展开更多
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relativ...Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.展开更多
In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge mod...In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.展开更多
There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte...There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.展开更多
To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle eff...To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle efficiency,the finite element method has been used in this study based on the COMSOL computational fluid dynamics module.The study results showed that the process cannot be realized alone under the two-dimensional axisymmetric,three-dimensional and three-dimensional symmetric models,but it can be calculated with the transformation dimension method,which uses the parameter equations generated from the two-dimensional axisymmetric flow field data of the three-dimensional model.The visualization of this complex process,which is difficult to measure and analyze experimentally,was realized in this study.The physical process,macro phenomena and particle distribution of supersonic atomization are analyzed in combination with this simulation.The rationality of the simulation was verified by experiments.A new method for the study of the atomization process and the exploration of its mechanism in a compressible transonic speed flow field based on the Laval nozzle has been provided,and a numerical platform for the study of supersonic atomization dust removal has been established.展开更多
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a...High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.展开更多
The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further cause...The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.展开更多
Rotating flows represent a very interesting area for researchers and industry for their extensive use in industrial and domestic machinery and especially for their great energy potential, annular flows are an example ...Rotating flows represent a very interesting area for researchers and industry for their extensive use in industrial and domestic machinery and especially for their great energy potential, annular flows are an example that draws the attention of researchers in recent years. The best design and optimization of these devices require knowledge of thermal, mechanical and hydrodynamic characteristics of flows circulating in these devices. An example of hydrodynamic parameters is the speed of rotation of the moving walls. This work is to study numerically the influence of the rotating speed ratio Γ of the two moving cylinders on the mean and especially on the turbulent quantities of the turbulent flow in the annular space. The numerical simulation is based on one-point statistical modeling using a low Reynolds number second-order full stress transport closure (RSM model), simulation code is not a black box but a completely transparent code where we can intervene at any step of the calculation. We have varied Γ from -1.0 to 1.0 while maintaining always the external cylinder with same speed Ω. The results show that the turbulence structure, profiles of mean velocities and the nature of the boundary layers of the mobile walls depend enormously on the ratio of speeds. The level of turbulence measured by the kinetic energy of turbulence and the Reynolds stresses shows well that the ratio Γ is an interesting parameter to exploit turbulence in this kind of annular flows.展开更多
Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ...Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
Two flow cases for scaled high speed train models with different length are numerically analyzed in the framework of the improved delayed detachededdy simulation model.Specific attention is paid to the shear flows and...Two flow cases for scaled high speed train models with different length are numerically analyzed in the framework of the improved delayed detachededdy simulation model.Specific attention is paid to the shear flows and related mechanisms in the near turbulent wake created by these moving models.In particular,a comparative analysis is made on the distributions of turbulent kinetic energy(TKE)and turbulence production(TP)in planes perpendicular to the streamwise direction.The numerical results suggest that,in the wake region very close to the tail,significant TKE and TP can be ascribed to the dynamic interaction between powerful eddies and strong shear,which explain why these quantities are sensitive to the shear strength.The shear flows are essentially governed by the boundary layers developing along the streamwise direction on the train surfaces,especially from the under-body region and the side walls.For other positions located in the downstream direction away from the tail,the interaction of vortices with the non-slip ground serves as a mechanism to promote transfer of energy from weak eddies to turbulence through the shear present in planes parallel to the ground.展开更多
The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃...The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy.展开更多
The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting spee...The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting speed,feed per tooth,cutting tool geometry and cooling strategy are demonstrated.It has been found that the surface quality of machined grooves can be improved by increasing the cutting speed.However,cryogenic cooling with CO_2 exhibits no significant improvement of surface quality.Microstructure and hardness investigations revealed similar microstructure and hardness variations near the machined groove walls for both utilized tool geometries.Therefore,cryogenic cooling can decrease more far-ranging hardness reductions due to high process temperatures,especially in the UFG regions of the machined parts,whilst it cannot prevent the drop in hardness directly at the groove walls.展开更多
The critical speeds for a vehicle turbocharger with hybrid ceramic ball bearing are researched. The ball bearing-rotor system produces resonance when it working in critical speed and that makes the turbocharger injury...The critical speeds for a vehicle turbocharger with hybrid ceramic ball bearing are researched. The ball bearing-rotor system produces resonance when it working in critical speed and that makes the turbocharger injury working for a long time. The calculation and analysis methods of the critical speed for the vehicle turbocharger are described. The critical speed is computed by two methods including Riccati transfer matrix and DyRoBeS finite element method for a vehicle turbocharger with hybrid ceramic ball bearing. The vibration experiment had been taken to validate the calculating result, Comparison between the results by two calculation methods and the test results show that the first critical speed differences are 6.47 % and 5.66 %, the second critical speed differences are 2.87 % and 2.94 % respectively. And then, the primary factors which influence the critical speed are analyzed, the conclusions will be helpful for the vehicle turbocharger bearing-rotor system design.展开更多
By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerica...By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerical solving of internal flow fields of turbomachineries.Taking an unshrouded radial impeller with the working fluid of water vapour as the research object,the flow response to the fluctuation of rotational speed was calculated.By comparing the surface pressure profiles and velocity contours calculated by the code and commercial software respectively,the accuracy of flow solver was verified.The analysis of flow response data indicates that,as the working condition shifts closer towards the surge boundary,the response of flow parameters such as mass flow and aerodynamic torque will be more nonsynchronous with the fluctuation of rotational speed,and also the influence of density variation on mass flow variation will be smaller.Moreover,the transient variation region of working condition performance will deviate farther away from the steady performance curve as the working condition approaches the surge boundary.Compared to the working conditions with small mass flows,the distribution characteristics of pressure difference load on the blade surface vary little under large mass flow conditions.The reduction of fluctuation amplitude of rotational speed exerts no influence on abating the hysteresis of flow response.展开更多
For the congestion problems in high-speed networks, a genetic based fuzzy Q-learning flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete ...For the congestion problems in high-speed networks, a genetic based fuzzy Q-learning flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete information for high-speed networks. In this case, the Q-learning, which is independent of mathematic model, and prior-knowledge, has good performance. The fuzzy inference is introduced in order to facilitate generalization in large state space, and the genetic operators are used to obtain the consequent parts of fuzzy rules. Simulation results show that the proposed controller can learn to take the best action to regulate source flow with the features of high throughput and low packet loss ratio, and can avoid the occurrence of congestion effectively.展开更多
As one weak topic in research of debris flow,abrasion of debris flow shortens obviously application life of control structure composed of concrete.High_speed drainage structure,one of the most effective techniques to ...As one weak topic in research of debris flow,abrasion of debris flow shortens obviously application life of control structure composed of concrete.High_speed drainage structure,one of the most effective techniques to control giant debris flow disaster,has shortened one_third application life due to abrasion by debris flow.Based on velocity calculation method founded by two_phase theory,research of abrasion mechanism of debris flow to high_speed drainage structure was made.The mechanism includes both abrasion mechanism of homogeneous sizing and shearing mechanism of particle of debris flow to high_speed drainage trough structure.Further abrasion equations of both sizing and particle were established by Newton movement theory of debris flow.And abrasion amount formula of the high_speed drainage trough structure is set up by dimensional analysis.Amount to calculating in the formula is consistent with testing data in_situ,which is valuable in design of high_speed drainage structure.展开更多
文摘The parabolized stability equations (PSEs) for high speed flows, especially supersonic and hypersonic flows, are derived and used to analyze the nonparallel boundary layer stability. The proposed numerical techniques for solving PSE include the following contents: introducing the efficiently normal transformation of the boundary layer, improving the computational accuracy by using a high-order differential scheme near the wall, employing the predictor-corrector and iterative approach to satisfy the important normalization condition, and implementing the stable spatial marching. Since the second mode dominates the growth of the disturbance in high Mach number flows, it is used in the computation. The evolution and characteristics of the boundary layer stability in the high speed flow are demonstrated in the examples. The effects of the nonparallelizm, the compressibility and the cooling wall on the stability are analyzed. And computational results are in good agreement with the relevant data.
文摘A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to the fixed outer casing. Computational models with/without the tip clearance are built and the κ-ω shear stress transport (SST) turbulence model and the unstructured mesh are applied to the numerical simulation for unsteady solutions. The overall performance is measured on a standard experimental bench and the major flow feature of each component inside the centrifugal fan is numerically investigated. In the presence of the tip clearance due to the difference of static pressure between leading and trailing edges of the clearance, i. e. , leading and trailing edges of the impeller, a strong return flow exists inside the clearance passage and re-circulates the main stream inside the impeller passage, and produces the strong flow interaction, thus changing the flow field and influencing the overall performance.
基金financially supported by the National Natural Science Foundation of China (No. 51674069)the National Key R & D Program of China (No. 2017YFC0805100)
文摘For the control of surface defects in interstitial-free(IF) steel, quantitative metallographic analyses of near-surface inclusions and surface liquid flow detection via the nail-board tipping method were conducted. The results show that, at casting speeds of 0.8 and 1.0 m/min, a thin liquid mold flux layer forms and non-uniform floating of argon bubbles occurs, inducing the entrainment and subsequent entrapment of the liquid flux; fine inclusion particles of Al_2O_3 can also aggregate at the solidification front. At higher casting speeds of 1.4 and 1.6 m/min, the liquid mold flux can be entrained and carried deeper into the liquid steel pool because of strong level fluctuations of the liquid steel and the flux. The optimal casting speed is approximately 1.2 m/min, with the most favorable surface flow status and, correspondingly, the lowest number of inclusions near the slab surface.
基金the National Natural Science Foundation of China (No.50576088), the Natural Science Foundation of Zhejiang Province (No.R503170) and the Doctoral Program Foundation of Ministry of Education (No.20030335009).
文摘Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.
基金Project(U1534210)supported by the National Natural Science Foundation of ChinaProject(14JJ1003)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2015CX003)supported by the Project of Innovation-driven Plan in Central South University,ChinaProject(14JC1003)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2015T002-A)supported by the Technological Research and Development program of China Railways Cooperation
文摘In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation(DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics(CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×10~6. The computations are conducted under three cases, train on the windward track on the bridge(WWC), train on the leeward track on the bridge(LWC) and train on the flat ground(FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases(WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train's aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.
基金Supported by the National Natural Science Foundation of China (NO: 51704146, 51274116, 51704145).
文摘To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle efficiency,the finite element method has been used in this study based on the COMSOL computational fluid dynamics module.The study results showed that the process cannot be realized alone under the two-dimensional axisymmetric,three-dimensional and three-dimensional symmetric models,but it can be calculated with the transformation dimension method,which uses the parameter equations generated from the two-dimensional axisymmetric flow field data of the three-dimensional model.The visualization of this complex process,which is difficult to measure and analyze experimentally,was realized in this study.The physical process,macro phenomena and particle distribution of supersonic atomization are analyzed in combination with this simulation.The rationality of the simulation was verified by experiments.A new method for the study of the atomization process and the exploration of its mechanism in a compressible transonic speed flow field based on the Laval nozzle has been provided,and a numerical platform for the study of supersonic atomization dust removal has been established.
基金Supported by the National Natural Science Foundation of China (No.50576088), the Natural Science Foundation of ZhejiangProvince (No.R503170) and the Doctoral Program Foundation of Ministry of Education (No.20030335009).
文摘High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.
基金Project(2011CB706606) supported by the National Basic Research of ChinaProject(51405375) supported by the National Natural Science Foundation of China
文摘The vortex formed around the rolling ball and the high pressure region formed around the ball-raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil-air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil-air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.
文摘Rotating flows represent a very interesting area for researchers and industry for their extensive use in industrial and domestic machinery and especially for their great energy potential, annular flows are an example that draws the attention of researchers in recent years. The best design and optimization of these devices require knowledge of thermal, mechanical and hydrodynamic characteristics of flows circulating in these devices. An example of hydrodynamic parameters is the speed of rotation of the moving walls. This work is to study numerically the influence of the rotating speed ratio Γ of the two moving cylinders on the mean and especially on the turbulent quantities of the turbulent flow in the annular space. The numerical simulation is based on one-point statistical modeling using a low Reynolds number second-order full stress transport closure (RSM model), simulation code is not a black box but a completely transparent code where we can intervene at any step of the calculation. We have varied Γ from -1.0 to 1.0 while maintaining always the external cylinder with same speed Ω. The results show that the turbulence structure, profiles of mean velocities and the nature of the boundary layers of the mobile walls depend enormously on the ratio of speeds. The level of turbulence measured by the kinetic energy of turbulence and the Reynolds stresses shows well that the ratio Γ is an interesting parameter to exploit turbulence in this kind of annular flows.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-Technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)。
文摘Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.
基金supported by the China Academy of Railway Sciences Corporation Limited Research Project(2019YJ165).
文摘Two flow cases for scaled high speed train models with different length are numerically analyzed in the framework of the improved delayed detachededdy simulation model.Specific attention is paid to the shear flows and related mechanisms in the near turbulent wake created by these moving models.In particular,a comparative analysis is made on the distributions of turbulent kinetic energy(TKE)and turbulence production(TP)in planes perpendicular to the streamwise direction.The numerical results suggest that,in the wake region very close to the tail,significant TKE and TP can be ascribed to the dynamic interaction between powerful eddies and strong shear,which explain why these quantities are sensitive to the shear strength.The shear flows are essentially governed by the boundary layers developing along the streamwise direction on the train surfaces,especially from the under-body region and the side walls.For other positions located in the downstream direction away from the tail,the interaction of vortices with the non-slip ground serves as a mechanism to promote transfer of energy from weak eddies to turbulence through the shear present in planes parallel to the ground.
文摘The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy.
基金supported by the German Research Foundation(DFG)the DFG for funding the subproject B3 and C5 of the Collaborative Research Center 666 "Integral sheet metal design with higher order bifurcations-Development,Production,Evaluation″
文摘The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting speed,feed per tooth,cutting tool geometry and cooling strategy are demonstrated.It has been found that the surface quality of machined grooves can be improved by increasing the cutting speed.However,cryogenic cooling with CO_2 exhibits no significant improvement of surface quality.Microstructure and hardness investigations revealed similar microstructure and hardness variations near the machined groove walls for both utilized tool geometries.Therefore,cryogenic cooling can decrease more far-ranging hardness reductions due to high process temperatures,especially in the UFG regions of the machined parts,whilst it cannot prevent the drop in hardness directly at the groove walls.
文摘The critical speeds for a vehicle turbocharger with hybrid ceramic ball bearing are researched. The ball bearing-rotor system produces resonance when it working in critical speed and that makes the turbocharger injury working for a long time. The calculation and analysis methods of the critical speed for the vehicle turbocharger are described. The critical speed is computed by two methods including Riccati transfer matrix and DyRoBeS finite element method for a vehicle turbocharger with hybrid ceramic ball bearing. The vibration experiment had been taken to validate the calculating result, Comparison between the results by two calculation methods and the test results show that the first critical speed differences are 6.47 % and 5.66 %, the second critical speed differences are 2.87 % and 2.94 % respectively. And then, the primary factors which influence the critical speed are analyzed, the conclusions will be helpful for the vehicle turbocharger bearing-rotor system design.
基金supported by the National Key Basic Research Program of China (No.2012CB026000 )the National Science Foundation for Young Scientists (No.2014011155)
文摘By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerical solving of internal flow fields of turbomachineries.Taking an unshrouded radial impeller with the working fluid of water vapour as the research object,the flow response to the fluctuation of rotational speed was calculated.By comparing the surface pressure profiles and velocity contours calculated by the code and commercial software respectively,the accuracy of flow solver was verified.The analysis of flow response data indicates that,as the working condition shifts closer towards the surge boundary,the response of flow parameters such as mass flow and aerodynamic torque will be more nonsynchronous with the fluctuation of rotational speed,and also the influence of density variation on mass flow variation will be smaller.Moreover,the transient variation region of working condition performance will deviate farther away from the steady performance curve as the working condition approaches the surge boundary.Compared to the working conditions with small mass flows,the distribution characteristics of pressure difference load on the blade surface vary little under large mass flow conditions.The reduction of fluctuation amplitude of rotational speed exerts no influence on abating the hysteresis of flow response.
文摘For the congestion problems in high-speed networks, a genetic based fuzzy Q-learning flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete information for high-speed networks. In this case, the Q-learning, which is independent of mathematic model, and prior-knowledge, has good performance. The fuzzy inference is introduced in order to facilitate generalization in large state space, and the genetic operators are used to obtain the consequent parts of fuzzy rules. Simulation results show that the proposed controller can learn to take the best action to regulate source flow with the features of high throughput and low packet loss ratio, and can avoid the occurrence of congestion effectively.
文摘As one weak topic in research of debris flow,abrasion of debris flow shortens obviously application life of control structure composed of concrete.High_speed drainage structure,one of the most effective techniques to control giant debris flow disaster,has shortened one_third application life due to abrasion by debris flow.Based on velocity calculation method founded by two_phase theory,research of abrasion mechanism of debris flow to high_speed drainage structure was made.The mechanism includes both abrasion mechanism of homogeneous sizing and shearing mechanism of particle of debris flow to high_speed drainage trough structure.Further abrasion equations of both sizing and particle were established by Newton movement theory of debris flow.And abrasion amount formula of the high_speed drainage trough structure is set up by dimensional analysis.Amount to calculating in the formula is consistent with testing data in_situ,which is valuable in design of high_speed drainage structure.