The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor a...The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.展开更多
This letter studies and analyzes the working features of main circuit of tri-level boost Power Factor Correct(PFC) converter and the advantages of tri-level switch converter in aspects of bearing high-voltage of power...This letter studies and analyzes the working features of main circuit of tri-level boost Power Factor Correct(PFC) converter and the advantages of tri-level switch converter in aspects of bearing high-voltage of power components,overall system loss and magnetic component selection based upon the single-level boost PFC switch converter.Besides,relying on the application of mi-croprocessor in power converter technology and DSP(Digital Signal Processing) chip's strong cal-culating capacity,the letter presents the adoption of modified scheme of tri-level boost PFC converter under the control of predictive control algorithm.Moreover,the operating principle and control method are specified,the results of circuit test and analysis are provided and the advantages of pre-dictive control technology-based multi-level boost PFC converter is verified.展开更多
Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching ti...Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching times increases,resulting in significant switching losses.To solve these issues,this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped(NPC)converter in CRM with PFC.By optimizing the discharging strategy and switching state sequence,the switching frequency and its variation range have been efficiently reduced.The detailed performance analysis is also presented regarding the switching frequency,the average switching times,and the effect of voltage gain.A 2 k W prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results.Compared with the totem-pole PFC converter,the switching frequency regulation range of the three-level PFC converter is reduced by 36.48%and the average switching times is reduced by 45.10%.The experimental result also shows a 1.2%higher efficiency for the three-level PFC converter in the full load range.展开更多
This paper presents a power factor corrected (PFC) new bridgeless (BL) Cuk Topologies for low power applications. A BL configuration of Cuk converter is proposed which eliminates the usage of diode bridge rectifier at...This paper presents a power factor corrected (PFC) new bridgeless (BL) Cuk Topologies for low power applications. A BL configuration of Cuk converter is proposed which eliminates the usage of diode bridge rectifier at the front end of the PFC converter, thus reducing the switching and conduction losses coupled with it. This new BL Cuk converter has two semiconductors switches. The current flow during each switching cycle interval of the converter reduces the conduction losses compared to the conventional Cuk PFC converter. It also reduces the input current ripple and Electromagnetic Interference (EMI). The inrush current during the starting period is limited and the input, output currents of the converter are continuous with minimum current ripple. Hence it is preferred mostly compared to other PFC circuits. The proposed topology works in the Discontinuous Conduction Mode (DCM) with simple control circuitry to achieve almost a unity power factor with less distortion in the input AC current. The switching of the power switches is done under zero current. The proposed PFC topologies are theoretically investigated and performance comparisons are made with the conventional rectifiers. The proposed PFC converter is simulated in MATLAB/SIMULINK with Fuzzy Logic Controller (FLC) and results are demonstrated to evaluate the effectiveness of the controller.展开更多
Dimmers are very widely applied in theatres,cinemas,dancing-parties, auditoriums and signal systems.They are usually supplied by single-stage AC/AC converters in the past with voltage regulation technique with the dis...Dimmers are very widely applied in theatres,cinemas,dancing-parties, auditoriums and signal systems.They are usually supplied by single-stage AC/AC converters in the past with voltage regulation technique with the disadvantages of high total harmonic distortion,low power factor and poor power transfer efficiency.This paper introduces a novel method-DC-modulation that implements DC/DC conversion technology into AC/AC converters.The DC-modulated single-stage PFC AC/AC converters effectively improved the power factor up to 0.999 and the power transfer efficiency up to 97.8 %.The experimental results verified our design and calculation.This technique will be widely used in light dimming and other industrial applications.展开更多
To provide electrical power for the Research System of Superconducting Magnets(RSSMs)including the background field superconducting magnet and the tested superconducting objects,the high power phase-controlled convert...To provide electrical power for the Research System of Superconducting Magnets(RSSMs)including the background field superconducting magnet and the tested superconducting objects,the high power phase-controlled converter will be used to develop the power supply system.However, because of its inner nonlinear feature, the current harmonics and the reactive power are injected into the AC power supply system. To improve the quality of the power supply system for RSSMs, an improved synchronous control strategy is suggested for the superconducting magnet power supply system, which comprises four series-connected six-pulse converters fed by a phase-shifting transformer, respectively. According to the proposed control strategy, the basic unit is two 12-pulse converters and the control method will be changed in terms of loadfluctuations which are represented by the per unit value of converter output voltage. As a result,harmonic is greatly reduced but the power factor is also high.展开更多
In this paper, the Author presents the theory and application of repetitive proportional integral current con-troller for boost single phase ac-dc converter with power factor correction (PFC). A repetitive controller ...In this paper, the Author presents the theory and application of repetitive proportional integral current con-troller for boost single phase ac-dc converter with power factor correction (PFC). A repetitive controller which is inserted in series with the proportional integral ( PI) controller shows very low crossover distortion of input current, low total harmonic distortion and very low tracking error when is compared with the con-ventional proportional integral controller. Full analysis of proposed controller is given and Matlab/Simulink is used for simulation. The simulation results show the validity of the proposed control method.展开更多
This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current...This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current(DC)with the boost converter.Power Factor Correction(PFC)is progressively significant to achieve high energy efficiency.The overall system efficiency can be increased as the bridgeless topology has less conduction losses from rectifying bridges.Also,the bridgeless and interleaved techniques are incorporated in this study to achieve better performance.The performance of the system is analyzed on both current control and sensor-less techniques.Different controllers such as Proportional Integral(PI)control,peak current control,Non-Linear Carrier(NLC)control,and sensor-less current control are integrated.All the above controllers are implemented using MATrix LABoratory(MATLAB)/SIMULINK.The performance parameter,namely Power Factor(PF),Total Harmonic Distortion(THD),is computed for both open loop and closed loop condition.The sensor-less current control method is implemented using the DsPIC30F2010 controller.The circuit performance is also verified from the simulation and hardware results.The proposed controller has inbuilt Analog-to-Digital Converter(ADC),Digital-to-Analog Converter(DAC),Pulse Width Modulation(PWM)generator,and provides fast responses.展开更多
Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(V...Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.展开更多
Bridgeless single-stage converters are used for efficient(alternative current)AC-(direct current)DC conversion.These converters control generators,likeelectromagnetic meso-and micro-scale generators with low voltage.P...Bridgeless single-stage converters are used for efficient(alternative current)AC-(direct current)DC conversion.These converters control generators,likeelectromagnetic meso-and micro-scale generators with low voltage.Power factorcorrection helps increase the factor of the power supply.The main advantage ofthe power factor is it shapes the input current for increasing the real power of theAC supply.In this paper,a two-switch bridgeless rectifier topology is designedwith a power factor correction capability.For the proposed converter topologyto have good power quality parameters,the closed loop scheme,which uses thegrey wolf optimization(GWO)algorithm,is implemented.The successes ofGWO encourage this research to implement GWO in the topology.The performanceof the proposed topology is analyzed under different load conditions.Simulation is carried out using the MATLAB/Simulink environment,and theresults are compared with those of conventional(proportional integral derivative)PID and(particle swarm optimization)PSO controllers.To validate the simulation results,a 350-W hardware prototype is implemented,and the voltage ripple,efficiency,and power factor under different load conditions are analyzed and tabulated.The comparative study clearly indicates that the proposed convertertopology with a closed loop control scheme using the GWO algorithm improves the power factor to 0.9732 and reduces the voltage ripple to 0.12%with a conversion efficiency of 98.25%.展开更多
This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in t...This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.展开更多
International standards impose several constraints concerning the electric power quality and require that the harmonic content of the line current of grid connected equipment is below assigned limits; for this reason,...International standards impose several constraints concerning the electric power quality and require that the harmonic content of the line current of grid connected equipment is below assigned limits; for this reason, operating of AC-DC converters with high power factor and low line current distortion has become essential. In this paper, the prototypal realization of a three-phase AC-DC 48 V power electronic converter for telecom system supplying is described and experimental testing results are discussed. The main constraints in the power supply design are the required power density of about 900 W per dm3 as well as the absence of the neutral wire in the supply grid. The carried out investigation is focused on three-level power converter configurations which are considered in order to reduce voltage rating of power switches. As a result of the reduced voltage, low on-resistance metal-oxide-semiconductor field effect transistors can be used in the power stage, solution which allows to achieve improved efficiency as well as increased switching frequency with respect to the insulated gate bipolar transistors based two-level topologies.展开更多
This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase ...This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.展开更多
The unified power flow controller(UPFC)based on modular multilevel converter(MMC) is the most creative flexible ac transmission system(FACTS) device. In theory, the output voltage of the series MMC in MMCUPFC can be r...The unified power flow controller(UPFC)based on modular multilevel converter(MMC) is the most creative flexible ac transmission system(FACTS) device. In theory, the output voltage of the series MMC in MMCUPFC can be regulated from 0 to the rated value. However,there would be relatively large harmonics in the output voltage if the voltage modulation ratio is small. In order to analyze the influence of MMC-UPFC on the harmonics of the power grid, the theoretical calculation method and spectra of the output voltage harmonics of MMC are presented. Subsequently, the calculation formulas of the harmonics in the power grid with UPFC are proposed. Based on it, the influence of UPFC on the grid voltage harmonics is evaluated, when MMC-UPFC is operated with different submodular numbers and voltage modular ratios. Eventually, the proposed analysis method is validated using digital simulation. The study results would provide guideline for the design and operation of MMC-UPFC project.展开更多
基金supported in part by the Jiangsu Natural Science Foundation of China under Grant BK20180013in part by the Shenzhen Science and Technology Innovation Committee(STIC)under Grant JCYJ20180306174439784.
文摘The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.
文摘This letter studies and analyzes the working features of main circuit of tri-level boost Power Factor Correct(PFC) converter and the advantages of tri-level switch converter in aspects of bearing high-voltage of power components,overall system loss and magnetic component selection based upon the single-level boost PFC switch converter.Besides,relying on the application of mi-croprocessor in power converter technology and DSP(Digital Signal Processing) chip's strong cal-culating capacity,the letter presents the adoption of modified scheme of tri-level boost PFC converter under the control of predictive control algorithm.Moreover,the operating principle and control method are specified,the results of circuit test and analysis are provided and the advantages of pre-dictive control technology-based multi-level boost PFC converter is verified.
基金supported in part by National Natural Science Foundation of China(No.52177193)in part by China Scholarship Council(CSC)State Scholarship Fund International Clean Energy Talent Project(No.[2019]157)。
文摘Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching times increases,resulting in significant switching losses.To solve these issues,this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped(NPC)converter in CRM with PFC.By optimizing the discharging strategy and switching state sequence,the switching frequency and its variation range have been efficiently reduced.The detailed performance analysis is also presented regarding the switching frequency,the average switching times,and the effect of voltage gain.A 2 k W prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results.Compared with the totem-pole PFC converter,the switching frequency regulation range of the three-level PFC converter is reduced by 36.48%and the average switching times is reduced by 45.10%.The experimental result also shows a 1.2%higher efficiency for the three-level PFC converter in the full load range.
文摘This paper presents a power factor corrected (PFC) new bridgeless (BL) Cuk Topologies for low power applications. A BL configuration of Cuk converter is proposed which eliminates the usage of diode bridge rectifier at the front end of the PFC converter, thus reducing the switching and conduction losses coupled with it. This new BL Cuk converter has two semiconductors switches. The current flow during each switching cycle interval of the converter reduces the conduction losses compared to the conventional Cuk PFC converter. It also reduces the input current ripple and Electromagnetic Interference (EMI). The inrush current during the starting period is limited and the input, output currents of the converter are continuous with minimum current ripple. Hence it is preferred mostly compared to other PFC circuits. The proposed topology works in the Discontinuous Conduction Mode (DCM) with simple control circuitry to achieve almost a unity power factor with less distortion in the input AC current. The switching of the power switches is done under zero current. The proposed PFC topologies are theoretically investigated and performance comparisons are made with the conventional rectifiers. The proposed PFC converter is simulated in MATLAB/SIMULINK with Fuzzy Logic Controller (FLC) and results are demonstrated to evaluate the effectiveness of the controller.
文摘Dimmers are very widely applied in theatres,cinemas,dancing-parties, auditoriums and signal systems.They are usually supplied by single-stage AC/AC converters in the past with voltage regulation technique with the disadvantages of high total harmonic distortion,low power factor and poor power transfer efficiency.This paper introduces a novel method-DC-modulation that implements DC/DC conversion technology into AC/AC converters.The DC-modulated single-stage PFC AC/AC converters effectively improved the power factor up to 0.999 and the power transfer efficiency up to 97.8 %.The experimental results verified our design and calculation.This technique will be widely used in light dimming and other industrial applications.
基金supported by National Natural Science Foundation of China (No. 51877001)
文摘To provide electrical power for the Research System of Superconducting Magnets(RSSMs)including the background field superconducting magnet and the tested superconducting objects,the high power phase-controlled converter will be used to develop the power supply system.However, because of its inner nonlinear feature, the current harmonics and the reactive power are injected into the AC power supply system. To improve the quality of the power supply system for RSSMs, an improved synchronous control strategy is suggested for the superconducting magnet power supply system, which comprises four series-connected six-pulse converters fed by a phase-shifting transformer, respectively. According to the proposed control strategy, the basic unit is two 12-pulse converters and the control method will be changed in terms of loadfluctuations which are represented by the per unit value of converter output voltage. As a result,harmonic is greatly reduced but the power factor is also high.
文摘In this paper, the Author presents the theory and application of repetitive proportional integral current con-troller for boost single phase ac-dc converter with power factor correction (PFC). A repetitive controller which is inserted in series with the proportional integral ( PI) controller shows very low crossover distortion of input current, low total harmonic distortion and very low tracking error when is compared with the con-ventional proportional integral controller. Full analysis of proposed controller is given and Matlab/Simulink is used for simulation. The simulation results show the validity of the proposed control method.
文摘This paper presents an efficient supply current wave shaping technique for bridgeless interleaved Single Ended Primary Inductor Converter(SEPIC).The SEPIC converter converts an Alternating Current(AC)to Direct Current(DC)with the boost converter.Power Factor Correction(PFC)is progressively significant to achieve high energy efficiency.The overall system efficiency can be increased as the bridgeless topology has less conduction losses from rectifying bridges.Also,the bridgeless and interleaved techniques are incorporated in this study to achieve better performance.The performance of the system is analyzed on both current control and sensor-less techniques.Different controllers such as Proportional Integral(PI)control,peak current control,Non-Linear Carrier(NLC)control,and sensor-less current control are integrated.All the above controllers are implemented using MATrix LABoratory(MATLAB)/SIMULINK.The performance parameter,namely Power Factor(PF),Total Harmonic Distortion(THD),is computed for both open loop and closed loop condition.The sensor-less current control method is implemented using the DsPIC30F2010 controller.The circuit performance is also verified from the simulation and hardware results.The proposed controller has inbuilt Analog-to-Digital Converter(ADC),Digital-to-Analog Converter(DAC),Pulse Width Modulation(PWM)generator,and provides fast responses.
基金the output of a research project (Title: Application of Doubly Fed Asynchronous machine in Pumped Storage Hydropower Plant in Generate Mode, supported by Islamic Azad University South Tehran Branch)
文摘Variable speed pumped storage machines are used extensively in wind power plant and pumped storage power plant. This paper presents direct torque and flux control(DTFC) of a variable speed pumped storage power plant(VSPSP). By this method both torque and flux have been applied to control the VSPSP. The comparison between VSPSP's control strategies is studied. At the first, a wind turbine with the capacity 2.2 k W and DTFC control strategies simulated then a 250 MW VSPSP is simulated with all of its parts(including electrical, mechanical, hydraulic and its control system) by MATLAB software. In all of simulations, both converters including two-level voltage source converter(2LVSC) and three-level voltage source converter(3LVSC) are applied. The results of applying 2LVSC and 3LVSC are the rapid dynamic responses with better efficiency, reducing the total harmonic distortion(THD) and ripple of rotor torque and flux.
文摘Bridgeless single-stage converters are used for efficient(alternative current)AC-(direct current)DC conversion.These converters control generators,likeelectromagnetic meso-and micro-scale generators with low voltage.Power factorcorrection helps increase the factor of the power supply.The main advantage ofthe power factor is it shapes the input current for increasing the real power of theAC supply.In this paper,a two-switch bridgeless rectifier topology is designedwith a power factor correction capability.For the proposed converter topologyto have good power quality parameters,the closed loop scheme,which uses thegrey wolf optimization(GWO)algorithm,is implemented.The successes ofGWO encourage this research to implement GWO in the topology.The performanceof the proposed topology is analyzed under different load conditions.Simulation is carried out using the MATLAB/Simulink environment,and theresults are compared with those of conventional(proportional integral derivative)PID and(particle swarm optimization)PSO controllers.To validate the simulation results,a 350-W hardware prototype is implemented,and the voltage ripple,efficiency,and power factor under different load conditions are analyzed and tabulated.The comparative study clearly indicates that the proposed convertertopology with a closed loop control scheme using the GWO algorithm improves the power factor to 0.9732 and reduces the voltage ripple to 0.12%with a conversion efficiency of 98.25%.
文摘This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.
文摘International standards impose several constraints concerning the electric power quality and require that the harmonic content of the line current of grid connected equipment is below assigned limits; for this reason, operating of AC-DC converters with high power factor and low line current distortion has become essential. In this paper, the prototypal realization of a three-phase AC-DC 48 V power electronic converter for telecom system supplying is described and experimental testing results are discussed. The main constraints in the power supply design are the required power density of about 900 W per dm3 as well as the absence of the neutral wire in the supply grid. The carried out investigation is focused on three-level power converter configurations which are considered in order to reduce voltage rating of power switches. As a result of the reduced voltage, low on-resistance metal-oxide-semiconductor field effect transistors can be used in the power stage, solution which allows to achieve improved efficiency as well as increased switching frequency with respect to the insulated gate bipolar transistors based two-level topologies.
文摘This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.
基金supported by State Grid Corporation of China(SGCC)’s Major Science and Technology Demonstrative Project of UPFC in West Nanjing Power Grid(No.SGCC-2015-011)
文摘The unified power flow controller(UPFC)based on modular multilevel converter(MMC) is the most creative flexible ac transmission system(FACTS) device. In theory, the output voltage of the series MMC in MMCUPFC can be regulated from 0 to the rated value. However,there would be relatively large harmonics in the output voltage if the voltage modulation ratio is small. In order to analyze the influence of MMC-UPFC on the harmonics of the power grid, the theoretical calculation method and spectra of the output voltage harmonics of MMC are presented. Subsequently, the calculation formulas of the harmonics in the power grid with UPFC are proposed. Based on it, the influence of UPFC on the grid voltage harmonics is evaluated, when MMC-UPFC is operated with different submodular numbers and voltage modular ratios. Eventually, the proposed analysis method is validated using digital simulation. The study results would provide guideline for the design and operation of MMC-UPFC project.