Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their...We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.展开更多
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the second order neutral functional differential equation with constant delays o...In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the second order neutral functional differential equation with constant delays of the form (x(t)+Bx(t-δ))"+Cx'(t)+g(x(t-τ))=p(t).展开更多
This paper deals with the problems on the existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays.The author obtains some sufficient conditions wh...This paper deals with the problems on the existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays.The author obtains some sufficient conditions which ganrantee the existence and uniqueness and stability of almost periodic solutions with module containment.The results extend all the results of the paper and solve the two open problems proposed in under much weaker conditions than that proposed in.展开更多
Using the theory of coincidence degree, the authors studied the existence of periodic solutions for higher order delay functional differential equations of neutral type with restoring terms and some new results for th...Using the theory of coincidence degree, the authors studied the existence of periodic solutions for higher order delay functional differential equations of neutral type with restoring terms and some new results for the existence of periodic solutions have been obtained.展开更多
In this paper, the existence of positive periodic solutions for infinite delay functional differential equations(FDEs for short) is discussed by utilizing a fixed point theorem on a cone in Banach space. Some results ...In this paper, the existence of positive periodic solutions for infinite delay functional differential equations(FDEs for short) is discussed by utilizing a fixed point theorem on a cone in Banach space. Some results on the existence of positive periodic solutions are derived.展开更多
A new and convenient method is used to study the existence of periodic solutions to neutral functional differential equations with infinite delay. A new criterion for the existence of periodic solutions is obtained in...A new and convenient method is used to study the existence of periodic solutions to neutral functional differential equations with infinite delay. A new criterion for the existence of periodic solutions is obtained in this paper.展开更多
In this paper,using Mawhin's continuation theorem in the theory of coincidence degree,we first prove the general existence theorem of periodic solutions for F.D.Es with infinite delay:dx(t)/dt=f(t,x_t),x(t)∈R^n,w...In this paper,using Mawhin's continuation theorem in the theory of coincidence degree,we first prove the general existence theorem of periodic solutions for F.D.Es with infinite delay:dx(t)/dt=f(t,x_t),x(t)∈R^n,which is an extension of Mawhin's existence theorem of periodic solutions of F.D.Es with finite delay.Second,as an application of it,we obtain the existence theorem of positive periodic solutions of the Lotka-Volterra equations:dx(t)/dt=x(t)(a-kx(t)-by(t)),dy(t)/dt=-cy(t)+d integral from n=0 to +∞ x(t-s)y(t-s)dμ(s)+p(t).展开更多
For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if perio...For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.展开更多
In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction ...In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results.展开更多
By using the generalized degree theory, some periodically perturbed functional differential equations have been proved to have at least one periodic solution if the associated homogeneous linear equations have no nont...By using the generalized degree theory, some periodically perturbed functional differential equations have been proved to have at least one periodic solution if the associated homogeneous linear equations have no nontrivial periodic solution. Some known results are generalized.展开更多
For an odd function f(x)defined only on a finite interval,this paper deals with the existence of periodic solutions and the number of simple periodic solutions of the differential delay equation(DDE)(?)(t)=-f(x(t-1))....For an odd function f(x)defined only on a finite interval,this paper deals with the existence of periodic solutions and the number of simple periodic solutions of the differential delay equation(DDE)(?)(t)=-f(x(t-1)).By use of the method of qualitative analysis combined with the constructing of special solutions a series of interesting results are obtained on these problems.展开更多
In this paper, we study two types of neutral functional differential equations with finite or unbounded distributed deviating arguments. By Banach contraction princi-ple, we obtain some sufficient conditions for the e...In this paper, we study two types of neutral functional differential equations with finite or unbounded distributed deviating arguments. By Banach contraction princi-ple, we obtain some sufficient conditions for the existence of positive solutions to such equations.展开更多
A criterion for the existence of T-periodic solutions of functional differential equations with finite delay is established, in which the uniform boundedness of solutions has been removed from the conditions. The obta...A criterion for the existence of T-periodic solutions of functional differential equations with finite delay is established, in which the uniform boundedness of solutions has been removed from the conditions. The obtained result is the counterpart of the one recently obtained for infinite delay equations, but the conditions in this work are simplified and much easier to verify. Also, the proof has been improved to be more clear and compact.展开更多
In an active control system, time delay will occur due to processes such as signal acquisition and transmission, calculation,and actuation. Time delay systems are usually described by delay differential equations(DDE...In an active control system, time delay will occur due to processes such as signal acquisition and transmission, calculation,and actuation. Time delay systems are usually described by delay differential equations(DDEs). Since it is hard to obtain an analytical solution to a DDE, numerical solution is of necessity. This paper presents a frequency-domain method that uses a truncated transfer function to solve a class of DDEs. The theoretical transfer function is the sum of infinite items expressed in terms of poles and residues. The basic idea is to select the dominant poles and residues to truncate the transfer function,thus ensuring the validity of the solution while improving the efficiency of calculation. Meanwhile, the guideline of selecting these poles and residues is provided. Numerical simulations of both stable and unstable delayed systems are given to verify the proposed method, and the results are presented and analysed in detail.展开更多
This paper is concerned with the periodic retarded functional differential equati-ons(RFDEs) with infinite delay. The sufficient conditions for the existence of noncon-stant positive periodic solutions are established...This paper is concerned with the periodic retarded functional differential equati-ons(RFDEs) with infinite delay. The sufficient conditions for the existence of noncon-stant positive periodic solutions are established by combining the theory of monotone semiflows generated by RFDEs with infinite delay and the fixed point theorems of solution operators. A nontrivial application of the results obtained here to a well-known nonautonomous Lotka-Volterra system with infinite delay is also presented.展开更多
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
文摘We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.
基金Supported by the National Natural Science Foundation of China(No.10371034)the Hunan Provincial Natural Science Foundation of China(05JJ40009).
文摘In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the second order neutral functional differential equation with constant delays of the form (x(t)+Bx(t-δ))"+Cx'(t)+g(x(t-τ))=p(t).
文摘This paper deals with the problems on the existence and uniqueness and stability of almost periodic solutions for functional differential equations with infinite delays.The author obtains some sufficient conditions which ganrantee the existence and uniqueness and stability of almost periodic solutions with module containment.The results extend all the results of the paper and solve the two open problems proposed in under much weaker conditions than that proposed in.
文摘Using the theory of coincidence degree, the authors studied the existence of periodic solutions for higher order delay functional differential equations of neutral type with restoring terms and some new results for the existence of periodic solutions have been obtained.
基金Supported by the Natural Science Foundation of Anhui Province(2004KJ028).
文摘In this paper, the existence of positive periodic solutions for infinite delay functional differential equations(FDEs for short) is discussed by utilizing a fixed point theorem on a cone in Banach space. Some results on the existence of positive periodic solutions are derived.
基金supported by the Foundation of Educational Department of Hebei Province(Z2011333)
文摘A new and convenient method is used to study the existence of periodic solutions to neutral functional differential equations with infinite delay. A new criterion for the existence of periodic solutions is obtained in this paper.
基金This project is supported by the National Natural Science Foundation of Chinathe Laboratory for Nonlinear Mechanics of Continuous Media of Academia Sinica
文摘In this paper,using Mawhin's continuation theorem in the theory of coincidence degree,we first prove the general existence theorem of periodic solutions for F.D.Es with infinite delay:dx(t)/dt=f(t,x_t),x(t)∈R^n,which is an extension of Mawhin's existence theorem of periodic solutions of F.D.Es with finite delay.Second,as an application of it,we obtain the existence theorem of positive periodic solutions of the Lotka-Volterra equations:dx(t)/dt=x(t)(a-kx(t)-by(t)),dy(t)/dt=-cy(t)+d integral from n=0 to +∞ x(t-s)y(t-s)dμ(s)+p(t).
文摘For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.
文摘In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results.
文摘By using the generalized degree theory, some periodically perturbed functional differential equations have been proved to have at least one periodic solution if the associated homogeneous linear equations have no nontrivial periodic solution. Some known results are generalized.
基金Supported by the National Natural Science Foudation of China.
文摘For an odd function f(x)defined only on a finite interval,this paper deals with the existence of periodic solutions and the number of simple periodic solutions of the differential delay equation(DDE)(?)(t)=-f(x(t-1)).By use of the method of qualitative analysis combined with the constructing of special solutions a series of interesting results are obtained on these problems.
基金sponsored by the National Natural Science Foundation of China (11071001)the NSF of Anhui Province (1208085MA13)+3 种基金the NSF of Education Bureau of Anhui Province(KJ2009A005Z KJ2010ZD02 2010SQRL159)Innovative Research Team Program of Anhui University, College doctoral special research foundation (20093401110001)
文摘In this paper, we study two types of neutral functional differential equations with finite or unbounded distributed deviating arguments. By Banach contraction princi-ple, we obtain some sufficient conditions for the existence of positive solutions to such equations.
文摘A criterion for the existence of T-periodic solutions of functional differential equations with finite delay is established, in which the uniform boundedness of solutions has been removed from the conditions. The obtained result is the counterpart of the one recently obtained for infinite delay equations, but the conditions in this work are simplified and much easier to verify. Also, the proof has been improved to be more clear and compact.
基金supported by the National Natural Science Foundation of China (11272235)
文摘In an active control system, time delay will occur due to processes such as signal acquisition and transmission, calculation,and actuation. Time delay systems are usually described by delay differential equations(DDEs). Since it is hard to obtain an analytical solution to a DDE, numerical solution is of necessity. This paper presents a frequency-domain method that uses a truncated transfer function to solve a class of DDEs. The theoretical transfer function is the sum of infinite items expressed in terms of poles and residues. The basic idea is to select the dominant poles and residues to truncate the transfer function,thus ensuring the validity of the solution while improving the efficiency of calculation. Meanwhile, the guideline of selecting these poles and residues is provided. Numerical simulations of both stable and unstable delayed systems are given to verify the proposed method, and the results are presented and analysed in detail.
基金Project supported by NNSF of China (No:19971026).
文摘This paper is concerned with the periodic retarded functional differential equati-ons(RFDEs) with infinite delay. The sufficient conditions for the existence of noncon-stant positive periodic solutions are established by combining the theory of monotone semiflows generated by RFDEs with infinite delay and the fixed point theorems of solution operators. A nontrivial application of the results obtained here to a well-known nonautonomous Lotka-Volterra system with infinite delay is also presented.