Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability ...Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.展开更多
In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power ...In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power extraction from the permanent magnet synchronous generator(PMSG).The bridgeless topology enables the elimination of the front-end diode bridge rectifier(DBR).Moreover,the converter has fewer components,simple control,and high efficiency,making it suitable for a small-scale WECS.A squirrel cage induction motor(SCIM)is used to emulate a MOD-2 wind turbine to implement the PMSG-based WECS.A direct-drive eight-pole PMSG is used in this study;thus,a low-input-voltage system is designed.The converter is designed to operate in the discontinuous inductor current mode(DICM)for inherent power factor correction(PFC)and the maximum power point tracking(MPPT)is achieved through the tip-speed ratio(TSR)following.The performance of the developed system is analyzed through simulation,and a 500 W hardware prototype is developed and tested in different wind speed conditions.展开更多
Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are ...Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.展开更多
In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of D...In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of DC,making the controller design the same as the DC-DC converter[1].It provides controllable gain benefits at the steady-state operating point,and finally realizes zero steady-state error[2].In addition,the creative analytical model is dedicated to building up a series of virtual quantities orthogonal to the actual single-phase system.In general,orthogonal imaginary numbers get the reference signal by delaying the real quantity by a quarter period.However,the introduction of such time delay makes the dynamic response of the system worse.In this paper,orthogonal quantities are generated from a virtual axis system parallel to the real axis,which can effectively improve the dynamic performance of traditional methods without increasing the complexity of controller structure.Through PSCAD simulation,the ideal experimental results are obtained.展开更多
The paper proposes a novel three-phase voltage-fed quasi-Z-source ac-ac converter topology to overcome the shortcomings of the traditional three-phase AC-AC chopper.The quantitative relationship between the output vol...The paper proposes a novel three-phase voltage-fed quasi-Z-source ac-ac converter topology to overcome the shortcomings of the traditional three-phase AC-AC chopper.The quantitative relationship between the output voltage and duty-ratio is deduced by investigating the topology and operating principle.It can provide buck-boost function,and the output voltage of the circuit can keep stable in the case of voltage sagging.Simulation is performed using the MATLAB software,and the experimental circuit is built based on the simulation results,the simulation and experimental results verify the correctness and feasibility of the proposed ac-ac converter topology.展开更多
A novel topology of Integrated Boost-SEPIC (IBS) AC-DC converter using common part sharing method (CPSM) has been proposed in this paper. Conventional boost converters with bridge rectifier configuration are inefficie...A novel topology of Integrated Boost-SEPIC (IBS) AC-DC converter using common part sharing method (CPSM) has been proposed in this paper. Conventional boost converters with bridge rectifier configuration are inefficient due to limited voltage step-up ratio which may not be applicable for high step-up applications as in the case of micro generators. The proposed IBS topology is based on the common part sharing method capable of operating both for positive and negative half cycle of the input signal. Result and simulation were conducted using PSIM environment. The proposed AC-DC IBS topology eliminates the requirement of bridge rectifier achieving high efficiency (about 99%), improved power factor (0.75, leading) and lower THD (about 38.8%) which is within IEEE standard.展开更多
This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase ...This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.展开更多
In industries DC motor drives are very essential due to their high performance applications such as its reliability, ease of control, low cost and simplicity. And speed control of these motors is very easy due to powe...In industries DC motor drives are very essential due to their high performance applications such as its reliability, ease of control, low cost and simplicity. And speed control of these motors is very easy due to power electronic AC-DC converters. These power electronic converters are with prominent low power factor and higher Total Harmonic Distortion (THD). These converters operate only for short time resulting non-sinusoidal waveform. This problem of harmonic distortion can be mitigated by reshaping the non-sinusoidal waveform to pure sine wave. Different wave shaping techniques have been developed by using different filters among which one is tuned passive filter. This paper proposed power factor improvement and harmonic mitigation of AC-DC converters based on separately excited DC motor using tuned passive filter. In this context experimental model is designed and results are analyzed by power quality analyzer.展开更多
The line side winding is under the fundamental frequency AC voltage, while the valve side winding contains not only fundamental AC voltage component, but also the DC voltage component, fundamental AC voltage component...The line side winding is under the fundamental frequency AC voltage, while the valve side winding contains not only fundamental AC voltage component, but also the DC voltage component, fundamental AC voltage component, and higher harmonic voltage components when the converter transformer is at its normal operating condition, and the electric field of converter transformer is a non-sinusoidal steady one. To analyze the non-sinusoidal steady electric field containing the DC component, fundamental AC and higher harmonic components, the voltage spectrum of the valve winding in a ±500 kV converter transformer is firstly analyzed, and the non-sinusoidal periodic steady electric field is obtained by the fast discrete Fourier transform. Different resistivity of the oil and oil-immersed paper is adopted to simulate the aging of oil paper insulation at operation, and get the non-sinusoidal steady electric field.展开更多
This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses d...This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.展开更多
The electrolytic-capacitor-less(EL-cap-less)technique has been attracting more and more interests in these years.The EL-cap-less single-phase to three-phase inverter(STI)with front-end diode rectifier is applied to ho...The electrolytic-capacitor-less(EL-cap-less)technique has been attracting more and more interests in these years.The EL-cap-less single-phase to three-phase inverter(STI)with front-end diode rectifier is applied to home electrical appliances.In EL-cap-less systems,film-type capacitor is used to suppress the high-frequency ripple components instead of smoothing the DC-link voltage.By using the EL-cap-less solution,reliability can be improved,lifetime can be increased and high power factor(PF)also can be realized.The EL-cap-less STI brings the opportunity to simplify system structure and lower cost.Because a certain DC-link capacitance is still required,the real PF is limited.To further improve the PF,the ripple components of current references are made in synchronous with the DClink voltage.And the capacitance chosen guideline of the film-type capacitor also be presented.A prototype is built to verify its real performance.展开更多
High-temperature,high-power converters have gained importance in industrial applications given their ability to operate in adverse environments,such as in petroleum exploration,multi-electric aircrafts,and electric ve...High-temperature,high-power converters have gained importance in industrial applications given their ability to operate in adverse environments,such as in petroleum exploration,multi-electric aircrafts,and electric vehicles.SiC metaloxide-semiconductor field-effect transistor(MOSFET),a new,wide bandgap,high-temperature device,is the key component of these converters.In this study,the static and dynamic characteristics of the SiC MOSFET,half-bridge module,are investigated at the junction temperature of 180℃.A simplified experimental method is then proposed pertaining to the power operation of the SiC module at 180℃.This method is based on the use of a thermal resistance test platform and is proven convenient for the study of heat dissipation characteristics.The high-temperature characteristics of the module are verified based on the conducted experiments.Accordingly,a 100 kW high-temperature converter is built,and the test results show that the SiC converter can operate at a junction temperature of 180℃in a stable manner in compliance with the requirements of high-temperature,high-power applications.展开更多
Developing the control of modem power converters is a very expensive and time-consuming task. Time to market can take unacceptable long. FPGA-based real-time simulation of a power stage with analog measured signals ca...Developing the control of modem power converters is a very expensive and time-consuming task. Time to market can take unacceptable long. FPGA-based real-time simulation of a power stage with analog measured signals can reduce significantly the cost and time of testing a product. This new approach is known as HIL (hardware-in-the-loop) testing. A general power converter consists of two main parts: a power level (main circuit) and a digital controller unit, which is usually realized by using some kind of DSP. Testing the controller HW and SW is quite problematic: live tests with a completely assembled converter can be dangerous and expensive. A low-power model of the main circuit can be built under laboratory conditions, but it will have parameters (e.g. time constants and relative losses) differing from the ones of the original system. The solution is the HIL simulation of the main circuit. With this method the simulator can be completely transparent for the controller unit, unlike other computer based simulation methods The subject of this paper is to develop such a real-time simulator using FPGA. The modeled circuit is a three-phase inverter, which is widely used in power converters of renewable energy sources.展开更多
In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a thre...In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a three level H-bridge neutral point clamped convener, (b) a three level back-to-back H-bridge neutral point clamped convener, (c) two three level H-bridge neutral point clamped converters parallel connected is being compared. From the simulation results it is obvious that in the first two cases the ripples, the distortion in primary and secondary winding currents, and the power factor are quite satisfactory and almost identical to each other. In the third case as compared with the first two, it is observed that current harmonics with higher amplitude appear in the primary winding of the transformer.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
The coordinated control of parallel three-phase fourwire converters in autonomous AC microgrids is investigated in this paper.First,based on droop control,virtual impedance is inserted in positive-,negative-and zero-s...The coordinated control of parallel three-phase fourwire converters in autonomous AC microgrids is investigated in this paper.First,based on droop control,virtual impedance is inserted in positive-,negative-and zero-sequences to enhance system damping and imbalance power sharing.Then,to facilitate virtual impedance design,small signal models of the three-sequence equivalent circuits are established respectively.Corresponding indexes are proposed to comprehensively evaluate the impact of sequence virtual impedance on current sharing accuracy,voltage quality at the point of common coupling(PCC)and system stability.In addition,constraint of DClink voltage is also considered to avoid over modulation when subjected to unbalanced loads.Furthermore,to address the PCC voltage degradation resulting from virtual impedance,a voltage imbalance compensation method,based on low-bandwidth communication,is proposed.Finally,simulation and experimental results are provided to verify the correctness of the theory model,indicating that the proposed method can achieve PCC voltage restoration while guaranteeing the current sharing accuracy with desirable dynamics.展开更多
Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvex...Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.展开更多
The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the...The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the VSC is operating under unbalanced grid voltage conditions. In this paper, a simple and direct modeling method is proposed for a three-phase VSC taking the unbalanced grid voltage as a new variable for the system.Then coupling in the three-phase system can be calculated by applying the harmonic linearization method. The calculated admittance of three-phase VSCs is verified by detailed circuit simulations.展开更多
We propose a modular multilevel converter(MMC)based three-phase four-wire(3P4W)split capacitor distribution static synchronous compensator(DSTATCOM),aiming at compensating unbalanced and reactive load currents.Due to ...We propose a modular multilevel converter(MMC)based three-phase four-wire(3P4W)split capacitor distribution static synchronous compensator(DSTATCOM),aiming at compensating unbalanced and reactive load currents.Due to the zero-sequence current compensation,the circulating current char-acteristics of 3P4W MMC-DSTATCOM are different from conventional MMCs.Moreover,the distinct working principle of IMMC would affect the features of split capacitor voltage.The decoupled positive-,negative-and zero-sequence second-order and DC components of the circulating current are deduced explicitly.Two proportional-integral controllers with dual dq transformation are employed to suppress the positive-and negative-sequence components of second-order circulating current,while quasi proportional-resonance controller is designed to eliminate the zero-sequence component.Besides,the phenomenon of the unbalanced split capacitor voltages is revealed,and fast-tracking balancing method by controlling zero-sequence current flowing through the split capacitors is provided.Digital simulation results verify the accuracy of the analysis and the feasibility of the suppression methods.展开更多
For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electr...For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.展开更多
基金National Natural Science Foundation of China(No.61741508)
文摘Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.
基金supported by Science and Engineering Research Board,India under SERB POWER FELLOWSHIP Grant (No.SPF/2021/000071)project Grant (No.EEQ/2021/000057)extended by SERB,India。
文摘In this paper,a wind energy conversion system(WECS)is presented for the electrification of rural areas with wind energy availability.A three-phase AC-DC converter based on a bridgeless Cuk converter is used for power extraction from the permanent magnet synchronous generator(PMSG).The bridgeless topology enables the elimination of the front-end diode bridge rectifier(DBR).Moreover,the converter has fewer components,simple control,and high efficiency,making it suitable for a small-scale WECS.A squirrel cage induction motor(SCIM)is used to emulate a MOD-2 wind turbine to implement the PMSG-based WECS.A direct-drive eight-pole PMSG is used in this study;thus,a low-input-voltage system is designed.The converter is designed to operate in the discontinuous inductor current mode(DICM)for inherent power factor correction(PFC)and the maximum power point tracking(MPPT)is achieved through the tip-speed ratio(TSR)following.The performance of the developed system is analyzed through simulation,and a 500 W hardware prototype is developed and tested in different wind speed conditions.
文摘Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.
文摘In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of DC,making the controller design the same as the DC-DC converter[1].It provides controllable gain benefits at the steady-state operating point,and finally realizes zero steady-state error[2].In addition,the creative analytical model is dedicated to building up a series of virtual quantities orthogonal to the actual single-phase system.In general,orthogonal imaginary numbers get the reference signal by delaying the real quantity by a quarter period.However,the introduction of such time delay makes the dynamic response of the system worse.In this paper,orthogonal quantities are generated from a virtual axis system parallel to the real axis,which can effectively improve the dynamic performance of traditional methods without increasing the complexity of controller structure.Through PSCAD simulation,the ideal experimental results are obtained.
文摘The paper proposes a novel three-phase voltage-fed quasi-Z-source ac-ac converter topology to overcome the shortcomings of the traditional three-phase AC-AC chopper.The quantitative relationship between the output voltage and duty-ratio is deduced by investigating the topology and operating principle.It can provide buck-boost function,and the output voltage of the circuit can keep stable in the case of voltage sagging.Simulation is performed using the MATLAB software,and the experimental circuit is built based on the simulation results,the simulation and experimental results verify the correctness and feasibility of the proposed ac-ac converter topology.
文摘A novel topology of Integrated Boost-SEPIC (IBS) AC-DC converter using common part sharing method (CPSM) has been proposed in this paper. Conventional boost converters with bridge rectifier configuration are inefficient due to limited voltage step-up ratio which may not be applicable for high step-up applications as in the case of micro generators. The proposed IBS topology is based on the common part sharing method capable of operating both for positive and negative half cycle of the input signal. Result and simulation were conducted using PSIM environment. The proposed AC-DC IBS topology eliminates the requirement of bridge rectifier achieving high efficiency (about 99%), improved power factor (0.75, leading) and lower THD (about 38.8%) which is within IEEE standard.
文摘This paper discusses a novel boost single-phase active AC-DC converters, named low-end semi-controlled bridge AC-DC converter. By analysis, its topology and principle can be derived from the conventional single-phase power factor corrector ( PFC). But it has also some differences, such as power device positions, inductor type, input voltage waveform detection and induction current detection, so its design is also different. The converter is implemented by employing two current detection approaches, i.e., current transformer detection and shunt resistor detection. Consequently, it can provide a steady DC output voltage with a low voltage ripple, approximately unitary input power factor and 2.5 kW output power. The experimental results show validity of the theoretical analysis.
文摘In industries DC motor drives are very essential due to their high performance applications such as its reliability, ease of control, low cost and simplicity. And speed control of these motors is very easy due to power electronic AC-DC converters. These power electronic converters are with prominent low power factor and higher Total Harmonic Distortion (THD). These converters operate only for short time resulting non-sinusoidal waveform. This problem of harmonic distortion can be mitigated by reshaping the non-sinusoidal waveform to pure sine wave. Different wave shaping techniques have been developed by using different filters among which one is tuned passive filter. This paper proposed power factor improvement and harmonic mitigation of AC-DC converters based on separately excited DC motor using tuned passive filter. In this context experimental model is designed and results are analyzed by power quality analyzer.
文摘The line side winding is under the fundamental frequency AC voltage, while the valve side winding contains not only fundamental AC voltage component, but also the DC voltage component, fundamental AC voltage component, and higher harmonic voltage components when the converter transformer is at its normal operating condition, and the electric field of converter transformer is a non-sinusoidal steady one. To analyze the non-sinusoidal steady electric field containing the DC component, fundamental AC and higher harmonic components, the voltage spectrum of the valve winding in a ±500 kV converter transformer is firstly analyzed, and the non-sinusoidal periodic steady electric field is obtained by the fast discrete Fourier transform. Different resistivity of the oil and oil-immersed paper is adopted to simulate the aging of oil paper insulation at operation, and get the non-sinusoidal steady electric field.
文摘This paper proposes a multiport bidirectional non-isolated converter topology that provides advantages in terms of simultaneous multiple operations,single-stage conversion,high power density and reduced power losses due to the lower number of switches.The proposed multiport converter uses a centralized non-linear controller known as a finite control set model predictive controller to manage the flow of power between different ports.It deals with the parallel operation of photovoltaic and battery energy storage systems for stand-alone alternating current(AC)systems.The converter connects the lower voltage battery to the photovoltaic port using a bidirectional buck/boost converter and the photovoltaic port is linked to the stand-alone AC load through a three-phase full-bridge inverter.Each leg of the three-phase converter will act as a bidirectional direct current(DC)/DC converter as well as an inverter simultaneously.Only six switches manage the power transfer between all the connected ports of photovoltaic-battery energy storage system linked to the stand-alone AC load.The proposed multiport converter is mathematically modelled and controlled by a finite control set model predictive controller.The system is validated in simulation(1-kW rating)and experimental environment(200-W rating).The hardware prototype is developed in the laboratory and the controller is implemented on the field-programmable gate array board.Two independent case studies are carried out to validate the efficacy of the system.The first scenario is for a change in solar irradiance,while the second scenario is for a change in the output load.
基金supported by the Fundamental Research Funds for the Central Universities (No.NT2018011)the China Postdoctoral Science Foundation (No.2015M580424)
文摘The electrolytic-capacitor-less(EL-cap-less)technique has been attracting more and more interests in these years.The EL-cap-less single-phase to three-phase inverter(STI)with front-end diode rectifier is applied to home electrical appliances.In EL-cap-less systems,film-type capacitor is used to suppress the high-frequency ripple components instead of smoothing the DC-link voltage.By using the EL-cap-less solution,reliability can be improved,lifetime can be increased and high power factor(PF)also can be realized.The EL-cap-less STI brings the opportunity to simplify system structure and lower cost.Because a certain DC-link capacitance is still required,the real PF is limited.To further improve the PF,the ripple components of current references are made in synchronous with the DClink voltage.And the capacitance chosen guideline of the film-type capacitor also be presented.A prototype is built to verify its real performance.
基金supported by the National Key R&D Program of China (grant no. 2017YFB0903303)
文摘High-temperature,high-power converters have gained importance in industrial applications given their ability to operate in adverse environments,such as in petroleum exploration,multi-electric aircrafts,and electric vehicles.SiC metaloxide-semiconductor field-effect transistor(MOSFET),a new,wide bandgap,high-temperature device,is the key component of these converters.In this study,the static and dynamic characteristics of the SiC MOSFET,half-bridge module,are investigated at the junction temperature of 180℃.A simplified experimental method is then proposed pertaining to the power operation of the SiC module at 180℃.This method is based on the use of a thermal resistance test platform and is proven convenient for the study of heat dissipation characteristics.The high-temperature characteristics of the module are verified based on the conducted experiments.Accordingly,a 100 kW high-temperature converter is built,and the test results show that the SiC converter can operate at a junction temperature of 180℃in a stable manner in compliance with the requirements of high-temperature,high-power applications.
文摘Developing the control of modem power converters is a very expensive and time-consuming task. Time to market can take unacceptable long. FPGA-based real-time simulation of a power stage with analog measured signals can reduce significantly the cost and time of testing a product. This new approach is known as HIL (hardware-in-the-loop) testing. A general power converter consists of two main parts: a power level (main circuit) and a digital controller unit, which is usually realized by using some kind of DSP. Testing the controller HW and SW is quite problematic: live tests with a completely assembled converter can be dangerous and expensive. A low-power model of the main circuit can be built under laboratory conditions, but it will have parameters (e.g. time constants and relative losses) differing from the ones of the original system. The solution is the HIL simulation of the main circuit. With this method the simulator can be completely transparent for the controller unit, unlike other computer based simulation methods The subject of this paper is to develop such a real-time simulator using FPGA. The modeled circuit is a three-phase inverter, which is widely used in power converters of renewable energy sources.
文摘In this paper the operation of a three level H-bridge converter as well as its parallel operations is analyzed and simulated on the computer. Based on the simulation results the operating behavior between (a) a three level H-bridge neutral point clamped convener, (b) a three level back-to-back H-bridge neutral point clamped convener, (c) two three level H-bridge neutral point clamped converters parallel connected is being compared. From the simulation results it is obvious that in the first two cases the ripples, the distortion in primary and secondary winding currents, and the power factor are quite satisfactory and almost identical to each other. In the third case as compared with the first two, it is observed that current harmonics with higher amplitude appear in the primary winding of the transformer.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
文摘The coordinated control of parallel three-phase fourwire converters in autonomous AC microgrids is investigated in this paper.First,based on droop control,virtual impedance is inserted in positive-,negative-and zero-sequences to enhance system damping and imbalance power sharing.Then,to facilitate virtual impedance design,small signal models of the three-sequence equivalent circuits are established respectively.Corresponding indexes are proposed to comprehensively evaluate the impact of sequence virtual impedance on current sharing accuracy,voltage quality at the point of common coupling(PCC)and system stability.In addition,constraint of DClink voltage is also considered to avoid over modulation when subjected to unbalanced loads.Furthermore,to address the PCC voltage degradation resulting from virtual impedance,a voltage imbalance compensation method,based on low-bandwidth communication,is proposed.Finally,simulation and experimental results are provided to verify the correctness of the theory model,indicating that the proposed method can achieve PCC voltage restoration while guaranteeing the current sharing accuracy with desirable dynamics.
基金supported by the National Natural Science Foundation of China under Grant 52177086the Fundamental Research Funds for the Central Universities under Grant 2023ZYGXZR063the Science and Technology Program of Guizhou Power Grid Coorperation under Grant GZKJXM20222386.
文摘Line-commutated converter (LCC)-based high-voltage DC (HVDC) systems have been integrated with bulk AC power grids for interregional transmission of renewable power. The nonlinear LCC model brings additional nonconvexity to optimal power flow (OPF) of hybrid AC-DC power grids. A convexification method for the LCC station model could address such nonconvexity but has rarely been discussed. We devise an equivalent reformulation for classical LCC station models that facilitates second-order cone convex relaxation for the OPF of LCC-based AC-DC power grids. We also propose sufficient conditions for exactness of convex relaxation with its proof. Equivalence of the proposed LCC station models and properties, exactness, and effectiveness of convex relaxation are verified using four numerical simulations. Simulation results demonstrate a globally optimal solution of the original OPF can be efficiently obtained from relaxed model.
基金supported by National Natural Science Foundation of China(No.51637007,No.51507118)
文摘The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the VSC is operating under unbalanced grid voltage conditions. In this paper, a simple and direct modeling method is proposed for a three-phase VSC taking the unbalanced grid voltage as a new variable for the system.Then coupling in the three-phase system can be calculated by applying the harmonic linearization method. The calculated admittance of three-phase VSCs is verified by detailed circuit simulations.
基金This work was supported in part by the National Natural Science Foundation of China(No.51807073).
文摘We propose a modular multilevel converter(MMC)based three-phase four-wire(3P4W)split capacitor distribution static synchronous compensator(DSTATCOM),aiming at compensating unbalanced and reactive load currents.Due to the zero-sequence current compensation,the circulating current char-acteristics of 3P4W MMC-DSTATCOM are different from conventional MMCs.Moreover,the distinct working principle of IMMC would affect the features of split capacitor voltage.The decoupled positive-,negative-and zero-sequence second-order and DC components of the circulating current are deduced explicitly.Two proportional-integral controllers with dual dq transformation are employed to suppress the positive-and negative-sequence components of second-order circulating current,while quasi proportional-resonance controller is designed to eliminate the zero-sequence component.Besides,the phenomenon of the unbalanced split capacitor voltages is revealed,and fast-tracking balancing method by controlling zero-sequence current flowing through the split capacitors is provided.Digital simulation results verify the accuracy of the analysis and the feasibility of the suppression methods.
文摘For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.