This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design ...This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design double-loop controller and sliding mode controller are clarified, analyzed and compared in the following. Finally the validity and feasibility of the new topology are tested by simulation. The results indicate that regulation of the voltage transfer ratio and output frequency can be realized optionally by the new converter, furthermore the harmonic distortion of waveform is low. So the inherent drawback of low voltage transfer ratio of traditional converter is effectively settled. This study may provide inspiration for further engineering application.展开更多
This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in t...This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.展开更多
文摘This paper presents a new inverter based on three-phase Boost/Buck-boost single-stage inverter. The basic configuration of the new topology and their fundamental principle are firstly introduced, the method of design double-loop controller and sliding mode controller are clarified, analyzed and compared in the following. Finally the validity and feasibility of the new topology are tested by simulation. The results indicate that regulation of the voltage transfer ratio and output frequency can be realized optionally by the new converter, furthermore the harmonic distortion of waveform is low. So the inherent drawback of low voltage transfer ratio of traditional converter is effectively settled. This study may provide inspiration for further engineering application.
文摘This paper presents a PFCVF (Power Factor Correction) rectifier that uses a variable frequency source for alternators for electric and hybrid vehicles application. In such application, the frequency of the signal in the alternator changes according to the vehicle speed, more over the loading effect on the alternator introduces harmonic currents and increases the alternator apparent power requirements. To overcome these problems and aiming more stability and better design of the alternator, a new third harmonic injection technique is proposed. This technique allows to preserve a good THD (Total Harmonic Distortion) of the input source at any frequency and to decrease losses in semiconductors switches, thereby allowing more stability and reducing the apparent power requirements. A comparative study between the standard and the new technique is made and highlights the effectiveness of the new design. A detailed analysis of the proposed topology is presented and simulations as well as experimental results are shown.