In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive mod...In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.展开更多
The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half c...The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement.展开更多
To describe the dynamic cracking process of the CLT vertical layer,the correlation between a load-displacement curve,specimen cracking,and planar shear failure mechanism of the CLT were explored.A three-point bending ...To describe the dynamic cracking process of the CLT vertical layer,the correlation between a load-displacement curve,specimen cracking,and planar shear failure mechanism of the CLT were explored.A three-point bending test and an improved planar shear test are used to evaluate the shear performance of the CLT.In this study,the load-displacement curve is recorded,the experimental part is synchronized with the video,the dynamic process of cracking of the vertical layer is observed and analyzed throughout the test.From the load-displacement curve,the image characteristics of the initial cracking and the sudden increase of the cracking of the specimen are summar-ized.The description results of the whole dynamic process of the CLT vertical layer cracking are analyzed by pla-nar shear strength value,cracking phenomenon,and azimuth angle of cracking surface.The main conclusions show that the three-point bending test and the improved plain shear test can be used to test the plain shear strength of the CLT,with a difference of only 5.7%.The original crack and the new crack expansion account for 18.9%and 81.1%of the main cracking surface,respectively.And the vertical layer of the CLT specimen under three-point bending has three cracking morphologies,such as radial shake,ring shake,neither along with the radial shake nor along with the ring shake.The azimuth angle of the cracking surface of the CLT vertical layer under planar shear is quite consistent with the first main plane azimuth of the vertical layer of the CLT specimens under the three-point bending test and the shearing test.The shape in the cracking direction of the left half-span or the right half-span of the vertical layer of the specimen is similar to the Chinese character eight.展开更多
High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and...High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and thus the fracture mechanism of the coating under external loading.In this study,the interdiffusion behavior in a magnetron sputtered Cr coating deposited on a Zr-4 alloy was studied in a vacuum environment at 1160C.In addition,the effect of interdiffusion on the microcracking behavior of the Cr coating was determined by in situ three-point bending tests.The experimental results show that the interdiffusion behavior resulted in the formation of a ZrCr2 layer,accompanied by the consumption of Cr coating and interfacial roughening.The growth of the diffusion layer followed a nearly parabolic law with respect to annealing time,and the residual stress of the annealed coating decreased with increasing annealing time.Under external loading,a large number of cracks were generated in the brittle interlayer,and some interfacial cracks were formed and grew at the ZrCr2/Zr-4 interface.Despite the remarkable microcracks in the ZrCr2 layer,the vacuum-annealed Cr coating has significantly fewer cracks than the original coating,mainly because of the recrystallization of the coating during annealing.展开更多
The mechanical properties and fracturing mechanism of shale containing beddings are critically important in shale gas exploitation and wellbore stability.To investigate the effects of shale bedding on crack behavior a...The mechanical properties and fracturing mechanism of shale containing beddings are critically important in shale gas exploitation and wellbore stability.To investigate the effects of shale bedding on crack behavior and fracturing mechanism,scanning electron microscope(SEM)with a loading system was employed to carry out three-point bending tests on Longmaxi outcrop shale.The crack initiation and propagation of Longmaxi shale were observed and recorded by taking photos during loading.The cracking paths were extracted to calculate the crack length through a MATLAB program.The peak load,fracture toughness and fracture energy all increase with the bedding angle from 0°to 90°.The crack length and energy were also found to increase with the bedding angle in the range of 0°-600 and then drop slightly.The fracturing mechanism of shale includes the main crack affected by the bedding angle and disturbed by randomly distributed particles.The main cracking path was accompanied by several microcrack branches which could form an interconnected crack system.When the main crack encounters larger sedimentary particles,it will deflect around the particles and then restore to the initial direction.A numerical technique using extended finite element method(XFEM)coupled with anisotropic cohesive damage criteria was developed,which is able to capture the dependence of crack propagations on bedding angle and sedimentary particles.This study sheds light on understanding and predicting mesoscale fracture behavior of shale with different bedding angles.展开更多
The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing v...The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing vital functions.The alloy consists of an a-Mg matrix and a eutectic composed of a-Mg4-Ca2Mg6Zn3.The eutectic product enhances the mechanical properties of the studied alloy,causing strengthening and providing superior hardness values.In this alloy,cracks initiate at the intermetallic compounds and progress through the matrix because of the open network formed by the eutectics.Attending to the corrosion results,the eutectic product presents a noble potential compared to the a-Mg phase.For this reason,the corrosion progresses preferentially through the matrix,avoiding the(α-Mg+Ca2Mg6Zri3)eutectic product,when the alloy is in direct contact to Hank's solution.展开更多
The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (P...The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (PMMA) denture-base resins. Specimens (n= 10) were fabricated from a conventional heat-activated QC-20 (Qc-) and a microwave heat-activated Acron MC (Ac-) PMMA resins. Powder/ liquid ratio followed the manufacturer's instructions for the control groups (Qc-c and Ac-c) and for the copolymer groups, the resins were prepared with 5% (-5), 10% (- 10), 15% (- 15) and 20% (-20) acrylamide contents, according to the molecular weight ratio, respectively. The flexural strength and flexural modulus were measured by a three-point bending test. The data obtained were statistically analyzed by Kruskal-Wallis test (a=O.05) to determine significant differences between the groups, The chemical structures of the resins were characterized by the nuclear magnetic resonance spectroscopy. Thermal stabilities were determined by thermogravimetric analysis (TGA) with a heating rate of 10 ~C.min-1 from 35 ~C to 600 ~C. Control groups from both acrylic resins showed the lowest flexural strength values. Qc-15 showed significant increase in the flexural strength when compared to Qc-c (P〈O.01). Ac-10 and Ac-15 showed significance when compared to Ac-c (P〈O.01). Acrylamide incorporation increased the elastic modulus in Qc-10, Qc-15 and Qc-20 when compared to Qc-c (P〈0.01). Also significant increase was observed in Ac-10, Ac-15 and Ac-20 copolymer groups when compared to Ac-c (P〈0.01). According to the 1H-nuclear magnetic resonance (NMR) results, acrylamide copolymerization was confirmed in the experimental groups. TGA results showed that the thermal stability of PMMA is increased by the insertion of AAm.展开更多
For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant con...For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials.展开更多
For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining techniq...For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining technique is undoubtedly the most suitable mining method.The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions,such as production safety,ore loss rate,and depletion rate.However,in this technique,the safety of the artificial roof of the next stratum is of paramount importance.Cementitious tailings backfilling(CTB)that is not sufficiently cemented and causes collapses could threaten ore production.This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional(3D)printing technology.Experimental means such as three-point bending and digital image correlation(DIC)techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights.The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics,with a maximum deflection value of 30.1 mm,while the 3D-printed rhomboid polymer(3D-PRP)structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics,but it has a higher maximum flexural strength of 2.83 MPa.A combination of 3D structure and CTB has more unique mechanical properties than CTB itself.This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines.展开更多
The definition of J-integral of interfacial crack was introduced. The three-point bending tests were can'ied out to obtain the critical loading values when the interfacial crack initiation occurred between coatings a...The definition of J-integral of interfacial crack was introduced. The three-point bending tests were can'ied out to obtain the critical loading values when the interfacial crack initiation occurred between coatings and substrates. The finite element analysis (FEA) was adopted to analyze the stress distribution in the specimens and compute the J-integral of the interracial crack between LX88A coating and Chinese Q345 steel. The results showed that the average value of critical J-integral is 0.70 N/m, which can be taken as the fracture parameter to evaluate the interracial fracture behavior for the three-point bending specimens of LX88A coating/Q345 steel system.展开更多
基金funding support from the National Key Research and Development Program of China(Grant No.2022YFC3102402)as well as from the National Natural Science Foundation of China(Grant No.51879257).
文摘In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.
文摘The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement.
文摘To describe the dynamic cracking process of the CLT vertical layer,the correlation between a load-displacement curve,specimen cracking,and planar shear failure mechanism of the CLT were explored.A three-point bending test and an improved planar shear test are used to evaluate the shear performance of the CLT.In this study,the load-displacement curve is recorded,the experimental part is synchronized with the video,the dynamic process of cracking of the vertical layer is observed and analyzed throughout the test.From the load-displacement curve,the image characteristics of the initial cracking and the sudden increase of the cracking of the specimen are summar-ized.The description results of the whole dynamic process of the CLT vertical layer cracking are analyzed by pla-nar shear strength value,cracking phenomenon,and azimuth angle of cracking surface.The main conclusions show that the three-point bending test and the improved plain shear test can be used to test the plain shear strength of the CLT,with a difference of only 5.7%.The original crack and the new crack expansion account for 18.9%and 81.1%of the main cracking surface,respectively.And the vertical layer of the CLT specimen under three-point bending has three cracking morphologies,such as radial shake,ring shake,neither along with the radial shake nor along with the ring shake.The azimuth angle of the cracking surface of the CLT vertical layer under planar shear is quite consistent with the first main plane azimuth of the vertical layer of the CLT specimens under the three-point bending test and the shearing test.The shape in the cracking direction of the left half-span or the right half-span of the vertical layer of the specimen is similar to the Chinese character eight.
基金the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302011)National Natural Science Foundation of China(Nos.52005523,U2032143,11902370)+3 种基金International Sci&Tech Cooperation Program of GuangDong Province(No.2019A050510022)Key Research Project of GuangDong Province(Nos.2019B010943001 and 2017B020235001)China Postdoctoral Science Foundation(Nos.2019M653173 and 2019TQ0374)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.2021qntd12).
文摘High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and thus the fracture mechanism of the coating under external loading.In this study,the interdiffusion behavior in a magnetron sputtered Cr coating deposited on a Zr-4 alloy was studied in a vacuum environment at 1160C.In addition,the effect of interdiffusion on the microcracking behavior of the Cr coating was determined by in situ three-point bending tests.The experimental results show that the interdiffusion behavior resulted in the formation of a ZrCr2 layer,accompanied by the consumption of Cr coating and interfacial roughening.The growth of the diffusion layer followed a nearly parabolic law with respect to annealing time,and the residual stress of the annealed coating decreased with increasing annealing time.Under external loading,a large number of cracks were generated in the brittle interlayer,and some interfacial cracks were formed and grew at the ZrCr2/Zr-4 interface.Despite the remarkable microcracks in the ZrCr2 layer,the vacuum-annealed Cr coating has significantly fewer cracks than the original coating,mainly because of the recrystallization of the coating during annealing.
基金financially supported by National Natural Science Foundation of China(grant No.41877257)Beijing OutstandingYoung Scientist Program(Grant No.BJJWZYJH01201911413037)+1 种基金Shaanxi Coal Group Key Project(Grant No.2018SMHKJA-J-03)Yueqi outstanding scholar Award Program by China University of Mining and Technology(Beijing),China。
文摘The mechanical properties and fracturing mechanism of shale containing beddings are critically important in shale gas exploitation and wellbore stability.To investigate the effects of shale bedding on crack behavior and fracturing mechanism,scanning electron microscope(SEM)with a loading system was employed to carry out three-point bending tests on Longmaxi outcrop shale.The crack initiation and propagation of Longmaxi shale were observed and recorded by taking photos during loading.The cracking paths were extracted to calculate the crack length through a MATLAB program.The peak load,fracture toughness and fracture energy all increase with the bedding angle from 0°to 90°.The crack length and energy were also found to increase with the bedding angle in the range of 0°-600 and then drop slightly.The fracturing mechanism of shale includes the main crack affected by the bedding angle and disturbed by randomly distributed particles.The main cracking path was accompanied by several microcrack branches which could form an interconnected crack system.When the main crack encounters larger sedimentary particles,it will deflect around the particles and then restore to the initial direction.A numerical technique using extended finite element method(XFEM)coupled with anisotropic cohesive damage criteria was developed,which is able to capture the dependence of crack propagations on bedding angle and sedimentary particles.This study sheds light on understanding and predicting mesoscale fracture behavior of shale with different bedding angles.
基金The authors would like to acknowledge the financial support from the Agencia Estatal de Investigacion(Project RTI2018-096391-B-C31)Comunidad de Madrid(Project ADITIMAT-CM S2018/NMT-4411)the FPU grant(15/03606)from the Ministerio de Educacion,Cultura y Deporte,Spain.
文摘The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing vital functions.The alloy consists of an a-Mg matrix and a eutectic composed of a-Mg4-Ca2Mg6Zn3.The eutectic product enhances the mechanical properties of the studied alloy,causing strengthening and providing superior hardness values.In this alloy,cracks initiate at the intermetallic compounds and progress through the matrix because of the open network formed by the eutectics.Attending to the corrosion results,the eutectic product presents a noble potential compared to the a-Mg phase.For this reason,the corrosion progresses preferentially through the matrix,avoiding the(α-Mg+Ca2Mg6Zri3)eutectic product,when the alloy is in direct contact to Hank's solution.
文摘The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (PMMA) denture-base resins. Specimens (n= 10) were fabricated from a conventional heat-activated QC-20 (Qc-) and a microwave heat-activated Acron MC (Ac-) PMMA resins. Powder/ liquid ratio followed the manufacturer's instructions for the control groups (Qc-c and Ac-c) and for the copolymer groups, the resins were prepared with 5% (-5), 10% (- 10), 15% (- 15) and 20% (-20) acrylamide contents, according to the molecular weight ratio, respectively. The flexural strength and flexural modulus were measured by a three-point bending test. The data obtained were statistically analyzed by Kruskal-Wallis test (a=O.05) to determine significant differences between the groups, The chemical structures of the resins were characterized by the nuclear magnetic resonance spectroscopy. Thermal stabilities were determined by thermogravimetric analysis (TGA) with a heating rate of 10 ~C.min-1 from 35 ~C to 600 ~C. Control groups from both acrylic resins showed the lowest flexural strength values. Qc-15 showed significant increase in the flexural strength when compared to Qc-c (P〈O.01). Ac-10 and Ac-15 showed significance when compared to Ac-c (P〈O.01). Acrylamide incorporation increased the elastic modulus in Qc-10, Qc-15 and Qc-20 when compared to Qc-c (P〈0.01). Also significant increase was observed in Ac-10, Ac-15 and Ac-20 copolymer groups when compared to Ac-c (P〈0.01). According to the 1H-nuclear magnetic resonance (NMR) results, acrylamide copolymerization was confirmed in the experimental groups. TGA results showed that the thermal stability of PMMA is increased by the insertion of AAm.
基金supported by the National Natural Science Foundation of China (Grants 91216108, 11432014, 11672301, 11372318, and 11502273)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22040501)
文摘For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the National Natural Science Foundation of China(No.51804017)。
文摘For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining technique is undoubtedly the most suitable mining method.The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions,such as production safety,ore loss rate,and depletion rate.However,in this technique,the safety of the artificial roof of the next stratum is of paramount importance.Cementitious tailings backfilling(CTB)that is not sufficiently cemented and causes collapses could threaten ore production.This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional(3D)printing technology.Experimental means such as three-point bending and digital image correlation(DIC)techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights.The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics,with a maximum deflection value of 30.1 mm,while the 3D-printed rhomboid polymer(3D-PRP)structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics,but it has a higher maximum flexural strength of 2.83 MPa.A combination of 3D structure and CTB has more unique mechanical properties than CTB itself.This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines.
基金Supported by Tianjin Natural Science Foundation (No.08JCYBJC09100)New Teacher Research Fund for the Doctoral Program of Higher Education of China (No.20070056096) and New Century Outstanding Talented Person Plan of China.
文摘The definition of J-integral of interfacial crack was introduced. The three-point bending tests were can'ied out to obtain the critical loading values when the interfacial crack initiation occurred between coatings and substrates. The finite element analysis (FEA) was adopted to analyze the stress distribution in the specimens and compute the J-integral of the interracial crack between LX88A coating and Chinese Q345 steel. The results showed that the average value of critical J-integral is 0.70 N/m, which can be taken as the fracture parameter to evaluate the interracial fracture behavior for the three-point bending specimens of LX88A coating/Q345 steel system.