期刊文献+
共找到569篇文章
< 1 2 29 >
每页显示 20 50 100
Thrust Optimization of Flapping Wing via Gradient Descent Technologies
1
作者 Jeshwanth Kundem 《Open Journal of Fluid Dynamics》 2024年第2期83-99,共17页
The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flo... The current work aims at employing a gradient descent algorithm for optimizing the thrust of a flapping wing. An in-house solver has been employed, along with mesh movement methodologies to capture the dynamics of flow around the airfoil. An efficient framework for implementing the coupled solver and optimization in a multicore environment has been implemented for the generation of optimized solutionsmaximizing thrust performance & computational speed. 展开更多
关键词 Steepest Descent CFD flapping wing Airfoil Thrust Performance
下载PDF
Structural Design and Analysis of Small Flapping Wing Aircraft Based on the Crank Slider Mechanism
2
作者 Minghui Ma Fengli Liu Yongping Hao 《Journal of Electronic Research and Application》 2023年第1期25-31,共7页
In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds w... In this project,the miniaturization of the aircraft was realized under the premise of strong maneuverability,high concealability,and driving a certain load,and the flight mode and structural characteristics of birds were imitated.A small bionic flapping wing aircraft was built.The flapping of the wing was realized by the crank slider mechanism,and the sizes of each part were calculated according to the bionics formula.The wingspan was 360.37 mm,the body width was 22 mm,the body length was 300 mm,the wing area was 0.05 m^(2),the flapping amplitude was 71°.ADAMS software was used to simulate the dynamics of the designed aircraft,and the variation of flapping amplitude and angular velocity during the movement of the aircraft was obtained,which verified the feasibility of the mechanism.The prototype aircraft was made for flight test,and the designed bionic flapping wing aircraft achieved the expected effect.It provides a theoretical basis and data support for the design and manufacture of small flapping wing aircraft. 展开更多
关键词 flapping wing aircraft Structural design Dynamic simulation
下载PDF
A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight 被引量:18
3
作者 Yongliang Yu Binggang Tong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期218-227,共10页
A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during in... A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during insect forward flight. It is revealed that the aerodynamic asymmetry between the downstroke and the upstroke due to stroke-asymmetrical flapping is a key to understand the flow physics of generation and modulation of the lift and the thrust. Predicted results for examples of given kinematics validate more specifically some viewpoints that the wing lift is more easily produced when the forward speed is higher and the thrust is harder, and the lift and the thrust are generated mainly during downstroke and upstroke, respectively. The effects of three controlling parameters, i.e. the angles of tilted stroke plane, the different downstroke duration ratios, and the different angles of attack in both down- and up-stroke, are further discussed. It is found that larger oblique angles of stroke planes generate larger thrust but smaller lift; larger downstroke duration ratios lead to larger thrust, while making little change in lift and input aerodynamic power; and again, a small increase of the angle of attack in downstroke or upstroke may cause remarkable changes in aerodynamic performance in the relevant stroke. 展开更多
关键词 Insect forward flight wing flapping Stroke asymmetry Oblique stroke plane Theoretical modeling.
下载PDF
Aerodynamic Effects of Corrugation in Flapping Insect Wings in Forward Flight 被引量:11
4
作者 Xueguang Meng Mao Sun 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第2期140-150,共11页
We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing mode... We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation. 展开更多
关键词 INSECT flapping forward flight wing corrugation AERODYNAMICS
下载PDF
Numerical investigation on aerodynamic performance of a bionic flapping wing 被引量:5
5
作者 Xinghua CHANG Laiping ZHANG +1 位作者 Rong MA Nianhua WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第11期1625-1646,共22页
This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are consid... This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are considered.An in-house unsteady flow solver based on hybrid moving grids.is adopted for unsteady flow simulations.We focus on two main issues in this study,i.e.,the influence of the proportion of down-stroke and the effect of span-wise twisting.Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process.The preferable proportion is about 0.7 by using the present geometry and kinematic model,which is very close to the observed data.Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting.Two cases with different reduced frequencies are simulated and compared with each other.The numerical results show that the power consumption reduces by more than 20%,and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases.The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack.These conclusions will be helpful for the high-performance micro air vehicle (MAV) design. 展开更多
关键词 flapping wing bird-like flapping unsteady flow radial basis function (RBF) hybrid dynamic mesh span-wise TWISTING mechanism
下载PDF
A simulation-based study on longitudinal gust response of flexible flapping wings 被引量:5
6
作者 Toshiyuki Nakata Ryusuke Noda +1 位作者 Shinobu Kumagai Hao Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第6期1048-1060,共13页
Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic sh... Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight,they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing.In order to test the hypothesis,the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility.The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology,the kinematics,the structural dynamics,the aerodynamics and the fluid-structure interactions of a hovering hawkmoth.The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings.It is found that the aerodynamic forces on the flapping wings are affected by the gust,because of the increase or decrease in relative wingtip velocity or kinematic angle of attack.The passive shape change of flexible wings can,however,reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions,except for the downward gust.Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback,which works passively with minimal delay,and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles. 展开更多
关键词 INSECT FLIGHT flapping wing FLEXIBLE wing GUST response Fluid-structure interaction Mechanical feedback
下载PDF
Human Memory/Learning Inspired Control Method for Flapping-Wing Micro Air Vehicles 被引量:3
7
作者 Garv Lebbv 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期127-133,共7页
The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flappi... The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flapping wing wasdeveloped.A control scheme inspired by human memory and learning concept was constructed for wing motion control ofMAVs.The salient feature of the proposed control lies in its capabilities to improve the control performance by learning fromexperience and observation on its current and past behaviors, without the need for system dynamic information.Furthermore,the overall control scheme has a fairly simple structure and demands little online computations, making it attractive for real-timeimplementation on MAVs.Both theoretical analysis and computer simulation confirms its effectiveness. 展开更多
关键词 flapping wing micro air vehicle BIO-INSPIRED memory-based control
下载PDF
A Bio-Inspired Flapping-Wing Robot With Cambered Wings and Its Application in Autonomous Airdrop 被引量:3
8
作者 Haifeng Huang Wei He +2 位作者 Qiang Fu Xiuyu He Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2138-2150,共13页
Flapping-wing flight, as the distinctive flight method retained by natural flying creatures, contains profound aerodynamic principles and brings great inspirations and encouragements to drone developers. Though some i... Flapping-wing flight, as the distinctive flight method retained by natural flying creatures, contains profound aerodynamic principles and brings great inspirations and encouragements to drone developers. Though some ingenious flapping-wing robots have been designed during the past two decades, development and application of autonomous flapping-wing robots are less successful and still require further research. Here, we report the development of a servo-driven bird-like flapping-wing robot named USTBird-I and its application in autonomous airdrop.Inspired by birds, a camber structure and a dihedral angle adjustment mechanism are introduced into the airfoil design and motion control of the wings, respectively. Computational fluid dynamics simulations and actual flight tests show that this bionic design can significantly improve the gliding performance of the robot, which is beneficial to the execution of the airdrop mission.Finally, a vision-based airdrop experiment has been successfully implemented on USTBird-I, which is the first demonstration of a bird-like flapping-wing robot conducting an outdoor airdrop mission. 展开更多
关键词 Autonomous airdrop bionic design bio-inspired robot cambered wing flapping wing
下载PDF
Development of Air Vehicle with Active Flapping and Twisting of Wing 被引量:8
9
作者 Sangyol Yoon Lac-Hyong Kang Sungho Jo 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第1期1-9,共9页
This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twis... This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping. 展开更多
关键词 BIOMIMETIC flapping-wing air vehicle flapping TWISTING voice coil motor linkage mechanism
下载PDF
The influence of the wake of a flapping wing on the production of aerodynamic forces 被引量:9
10
作者 Jianghao Wu Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期411-418,共8页
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and... The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing. 展开更多
关键词 Insect. flapping. Unsteady aerodynamics.wing/wake interaction. CFD analysis
下载PDF
Application of Piezoelectric Actuator and Compliant Structures to Achieve Flapping Wing Motion for a MAV 被引量:3
11
作者 Kranti. K. Lal Kummari S. J. Croucher N. J. Lawson E. E. Liani G. Allegri S. Guo Hsien-Chun Chung Z. Huang 《材料科学与工程学报》 CAS CSCD 北大核心 2008年第4期642-646,515,共6页
Micro Aerial Vehicles(MAVs) are the smallest artificial aircraft.Most of the flapping wings MAVs are powered by electric motors of various capacities.We report in this paper the application of piezoelectric actuators ... Micro Aerial Vehicles(MAVs) are the smallest artificial aircraft.Most of the flapping wings MAVs are powered by electric motors of various capacities.We report in this paper the application of piezoelectric actuators as power system for a flapping wing MAV using a compliant displacement amplification mechanism.The actuator used for this application is a pre-stressed cut piece of TH-7R type Thunder actuator.A two-bar compliant mechanism with two flexures has been developed to convert the linear displacement into angular movement and amplification.The specimens were made from carbon fiber links and nylon flexures.We also proposed to use the product of frequency(F) and tip displacement(D), F * D as a criteria for the characterization of an amplifying mechanism.The best specimen according to this criterion is obtained for a 5mm length flexure specimen made of three layers of nylon.The F*D value obtained for this specimen was(0.58) Hz.m.ANSYS finite element analysis results for different flexural thickness and lengths were obtained and have been compared to the experimental results.The effect of both the thickness and length of the flexure on a particular arrangement has been discussed. 展开更多
关键词 平板翼 扑翼式微飞行器 飞行技术 控制方法 材料结构
下载PDF
Kinematic and Aerodynamic Modelling of Bi- and Quad-Wing Flapping Wing Micro-Air-Vehicle 被引量:1
12
作者 Harijono Djojodihardjo Alif Syamim S. Ramli +1 位作者 Surjatin Wiriadidjaja Azmin Shakrine Mohd Rafie 《Advances in Aerospace Science and Technology》 2016年第3期83-101,共19页
A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produc... A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work. 展开更多
关键词 Bi-wing Ornithopter flapping wing Aerodynamics flapping wing Ornithopter Micro Air Vehicle Quad-wing Ornithopter
下载PDF
Effects of aspect ratio on flapping wing aerodynamics in animal flight
13
作者 Jun-Jiang Fu Csaba Hefler +1 位作者 Hui-He Qiu Wei Shyy 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期776-786,共11页
Morphology as well as kinematics is a critical determinant of performance in flapping flight.To understand the effects of the structural traits on aerodynamics of bioflyers,three rectangular wings with aspect ratios... Morphology as well as kinematics is a critical determinant of performance in flapping flight.To understand the effects of the structural traits on aerodynamics of bioflyers,three rectangular wings with aspect ratios(AR)of1,2,and 4 performing hovering-like sinusoidal kinematics at wingtip based Reynolds number of 5 300 are experimentally investigated.Flow structures on sectional cuts along the wing span are compared.Stronger K-H instability is found on the leading edge vortex of wings with higher aspect ratios.Vortex bursting only appears on the outer spanwise locations of high-aspect-ratio wings.The vortex bursting on high-aspect-ratio wings is perhaps one of the reasons why bio-flyers normally have low-aspect-ratio wings.Quantitative analysis exhibits larger dimensionless circulation of the leading edge vortex(LEV)over higher aspect ratio wings except when vortex bursting happens.The average dimensionless circulation of AR1 and AR2 along the span almost equals the dimensionless circulation at the 50%span.The flow structure and the circulation analysis show that the sinusoidal kinematics suppresses breakdown of the LEV compared with simplified flapping kinematics used in similar studies.The Reynolds number effect results on AR4 show that in the current Re range,the overall flow structure is not sensitive to Reynolds number. 展开更多
关键词 Aspect ratio AERODYNAMICS Leading edge vortex flapping wing
下载PDF
Aerodynamic Analysis and Simulation of Flapping Wing Aerial Vehicles on Hovering
14
作者 Liangliang Ren Hongbin Deng Qiang Shen 《Journal of Beijing Institute of Technology》 EI CAS 2019年第4期696-702,共7页
In order to design and verify control algorithms for flapping wing aerial vehicles(FWAVs),calculation models of the translational force,rotational force and virtual mass force were established with the basis on the mo... In order to design and verify control algorithms for flapping wing aerial vehicles(FWAVs),calculation models of the translational force,rotational force and virtual mass force were established with the basis on the modified quasi-steady aerodynamic theory and high lift mechanisms of insect flight.The simulation results show that the rotational force and virtual mass force can be ignored in the hovering FWAVs with simple harmonic motions in a cycle.The effects of the wing deformation on aerodynamic forces were investigated by regarding the maximum rotational angle of wingtip as a reference variable.The simulation results also show that the average lift coefficient increases and drag coefficient decreases with the increase of the maximum rotational angle of wingtip in the range of 0-90°. 展开更多
关键词 BIONICS flapping wing aerial vehicles(FWAVs) aerodynamic analysis flexible wing
下载PDF
Lift and Thrust Characteristics of Flapping Wing Aerial Vehicle with Pitching and Flapping Motion
15
作者 Chunjin Yu Daewon Kim Yi Zhao 《Journal of Applied Mathematics and Physics》 2014年第12期1031-1038,共8页
Development of flapping wing aerial vehicle (FWAV) has been of interest in the aerospace community with ongoing research into unsteady and low Reynolds number aerodynamics based on the vortex lattice method. Most of t... Development of flapping wing aerial vehicle (FWAV) has been of interest in the aerospace community with ongoing research into unsteady and low Reynolds number aerodynamics based on the vortex lattice method. Most of the previous research has been about pitching and plunging motion of the FWAV. With pitching and flapping motion of FMAV, people usually study it by experiment, and little work has been done by numerical calculation. In this paper, three-dimension unsteady vortex lattice method is applied to study the lift and thrust of FWAV with pitching and flapping motion. The results show that: 1) Lift is mainly produced during down stroke, however, thrust is produced during both down stroke and upstroke. The lift and thrust produced during down stroke are much more than that produced during upstroke. 2) Lift and thrust increase with the increase of flapping frequency;3) Thrust increases with the increase of flapping amplitude, but the lift decreases with the increase of flapping amplitude;4) Lift and thrust increase with the increase of mean pitching angle, but the effect on lift is much more than on thrust. This research is helpful to understand the flight mechanism of birds, thus improving the design of FWAV simulating birds. 展开更多
关键词 flapping wing AERIAL VEHICLE LIFT CHARACTERISTICS Thrust CHARACTERISTICS
下载PDF
Stress Analysis of Membrane Flapping-Wing Aerial Vehicle Based on Different Material Models
16
作者 Chunjin Yu Daewon Kim Yi Zhao 《Journal of Applied Mathematics and Physics》 2014年第12期1023-1030,共8页
Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress... Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress analysis is conducted in this study on membrane flapping-wing aerial vehicles using finite element method based on three material models, namely, linear elastic, Mooney-Rivlin non linear, and composite material models. The purpose of this paper is to understand how different types of materials affect the stresses of a flapping-wing. In the finite element simulation, each flapping cycle is divided into twelve stages and the maximum stress is calculated in each stage. The results show that 1) there are two peak stress values in one flapping cycle;one at the beginning stage of down stroke and the other at the beginning of upstroke, 2) maximum stress at the beginning of down stroke is greater than that at the beginning of upstroke, 3) maximum stress based on each material model is different. The composite and the Mooney-Rivlin nonlinear models produce much less stresses compared to the linear material model;and 4) the ratio of downstroke maximum stress and upstroke maximum stress varies with different material models. This research is helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles. 展开更多
关键词 flapping-wing AERIAL VEHICLE MEMBRANE wing STRESS Analysis
下载PDF
Experimental Study on the Effect of Increased Downstroke Duration for an FWAV with Morphing-coupled Wing Flapping Configuration 被引量:2
17
作者 Ang Chen Bifeng Song +3 位作者 ZhiheWang Kang Liu Dong Xue Xiaojun Yang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期192-208,共17页
This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system bas... This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system based on Hall effect sensors is designed and applied,which is capable of assigning different up-and down-stroke speeds for the RoboFalcon platform to achieve an adjustable downstroke ratio.The aerodynamic and power characteristics of the morphing-coupled flapping pattern and the conventional flapping pattern with varying downstroke ratios are measured through a wind tunnel experiment,and the corresponding aerodynamic models are developed and analyzed by the nonlinear least squares method.The relatively low power consumption of the slow-downstroke mode of this vehicle is verified through outdoor flight tests.The results of wind tunnel experiments and flight tests indicate that increased downstroke duration can improve aerodynamic and power performance for the RoboFalcon platform. 展开更多
关键词 flapping wing aerial vehicle(FWAV) Downstroke ratio Bio-inspired design Morphing-coupled flapping
原文传递
Effects of dynamical spanwise retraction and stretch on flapping-wing forward flights 被引量:1
18
作者 Kang LIU Bifeng SONG +3 位作者 Ang CHEN Zhihe WANG Dong XUE Wenqing YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期181-202,共22页
Birds and bats retract and stretch their wings dynamically during each flap in level flights, implying intriguing mechanisms for the aerodynamic performance improvement of flapping wings. A numerical investigation int... Birds and bats retract and stretch their wings dynamically during each flap in level flights, implying intriguing mechanisms for the aerodynamic performance improvement of flapping wings. A numerical investigation into the aerodynamic effects of such bio-inspired concept in forward flights has been performed based on a three-dimensional wing in plunging motion and a twosection wing in flapping motion. The currently considered Reynolds number and Strouhal number are Re=1.5×10^(5) and St=0.3, respectively. During the research, the mean angle of attack is varied in relatively wide ranges to achieve lift-thrust interconversion for the wings. The conclusive results show that dynamical spanwise retraction and stretch has induced three absolutely desirable scenarios for the oscillating wings in forward flights, namely producing more lift and consuming less power for a given thrust generation, producing more thrust and consuming less power for a given lift generation, and producing more lift and more thrust while consuming less power. Furthermore,the morphing wings have alleviated periodical aerodynamic load fluctuations compared with the non-morphing baseline. The mechanism of the aerodynamic effects of the bionic morphing mode is analyzed with the aid of field visualization. The current article is the first to reveal the absolute advantages of the bionic spanwise morphing. Hopefully, it may help comprehend the behaviors of natural fliers and provide inspirations for performance enhancement of micro artificial flappingwing vehicles. 展开更多
关键词 flapping wing Morphing wing BIONIC AERODYNAMICS VORTEX Flight
原文传递
Lift system optimization for hover-capable flapping wing micro air vehicle
19
作者 Shengjie XIAO Yongqi SHI +4 位作者 Zemin WANG Zhe NI Yuhang ZHENG Huichao DENG Xilun DING 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第3期61-75,共15页
A key challenge is using bionic mechanisms to enhance aerodynamic performance of hover-capable flapping wing micro air vehicle(FWMAV).This paper presented a new lift system with high lift and aerodynamic efficiency,wh... A key challenge is using bionic mechanisms to enhance aerodynamic performance of hover-capable flapping wing micro air vehicle(FWMAV).This paper presented a new lift system with high lift and aerodynamic efficiency,which use a hummingbird as a bionic object.This new lift system is able to effectively utilize the high lift mechanism of hummingbirds,and this study innovatively utilizes elastic energy storage elements and installs them at the wing root to help improve aerodynamic performance.A flapping angle of 154°is achieved through the optimization of the flapping mechanism parameters.An optimized wing shape and parameters are obtained through experimental studies on the wings.Consequently,the max net lift generated is 17.6%of the flapping wing vehicle’s weight.Moreover,energy is stored and released periodically during the flapping cycle,by imitating the musculoskeletal system at the wing roots of hummingbirds,thereby improving the energy utilization rate of the FWMAV and reducing power consumption by 4.5%under the same lift.Moreover,strength verification and modal analyses are conducted on the flapping mechanism,and the weight of the flapping mechanism is reduced through the analysis and testing of different materials.The results show that the lift system can generate a stable lift of 31.98 g with a wingspan of 175 mm,while the lift system weighs only 10.5 g,providing aerodynamic conditions suitable for high maneuverability flight of FWMAVs. 展开更多
关键词 lift optimization flapping wing elastic energy hovering flapping mechanism
原文传递
Aerodynamic Performance of Three Flapping Wings with Unequal Spacing in Tandem Formation
20
作者 Min Chang Ziyi Xu +2 位作者 Zengshuang Chen Li Li Xueguang Meng 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1662-1676,共15页
To better understand the aerodynamic reasons for highly organized movements of flying organisms,the three-flapping wing system in tandem formation was studied numerically in this paper.Different from previous relevant... To better understand the aerodynamic reasons for highly organized movements of flying organisms,the three-flapping wing system in tandem formation was studied numerically in this paper.Different from previous relevant studies on the multiple flapping wings that are equally spaced,this study emphasizes the impact of unequal spacing between individuals on the aerodynamics of each individual wing as well as the whole system.It is found that swapping the distance between the first and second wing with the distance between the second wing and the rearmost wing does not affect the overall aerodynamic performance,but significantly changes the distribution of aerodynamic benefits across each wing.During the whole flapping cycle,three effects are at play.The narrow channel effect and the downwash effect can promote and weaken the wing lift,respectively,while the wake capture effect can boost the thrust.It also shows that these effects could be manipulated by changing the spacing between adjacent wings.These findings provide a novel way for flow control in tandem formation flight and are also inspiring for designing the formation flight of bionic aircraft. 展开更多
关键词 Three flapping wings Unequal spacing Aerodynamic performance Tandem formation
原文传递
上一页 1 2 29 下一页 到第
使用帮助 返回顶部