The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify ...The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify the consistency between the actuated inverse solution and the sensed forward solution. Analysis results show that the WMR possesses 3 degrees of freedom, and its motion trajectory is a straight line. The "pushing" and "pulling" motion patterns of the WMR can be generated by using different wheel orientations. It can be used in the places where the space is limited.展开更多
This paper proposes a self-position estimate algorithm for the multiple mobile robots; each robot uses two omnidirectional cameras and an accelerometer. In recent years, the Great East Japan Earthquake and large-scale...This paper proposes a self-position estimate algorithm for the multiple mobile robots; each robot uses two omnidirectional cameras and an accelerometer. In recent years, the Great East Japan Earthquake and large-scale disasters have occurred frequently in Japan. From this, development of the searching robot which supports the rescue team to perform a relief activity at a large-scale disaster is indispensable. Then, this research has developed the searching robot group system with two or more mobile robots. In this research, the searching robot equips with two omnidirectional cameras and an accelerometer. In order to perform distance measurement using two omnidirectional cameras, each parameter of an omnidirectional camera and the position and posture between two omnidirectional cameras have to be calibrated in advance. If there are few mobile robots, the calibration time of each omnidirectional camera does not pose a problem. However, if the calibration is separately performed when using two or more robots in a disaster site, etc., it will take huge calibration time. Then, this paper proposed the algorithm which estimates a mobile robot's position and the parameter of the position and posture between two omnidirectional cameras simultaneously. The algorithm proposed in this paper extended Nonlinear Transformation (NLT) Method. This paper conducted the simulation experiment to check the validity of the proposed algorithm. In some simulation experiments, one mobile robot moves and observes the circumference of another mobile robot which has stopped at a certain place. This paper verified whether the mobile robot can estimate position using the measurement value when the number of observation times becomes 10 times in n/18 of observation intervals. The result of the simulation shows the effectiveness of the algorithm.展开更多
This paper proposed an algorithm on simultaneous position estimation and calibration of omnidirectional camera parameters for a group of multiple mobile robots. It is aimed at developing of exploration and information...This paper proposed an algorithm on simultaneous position estimation and calibration of omnidirectional camera parameters for a group of multiple mobile robots. It is aimed at developing of exploration and information gathering robotic system in unknown environment. Here, each mobile robot is not possible to know its own position. It can only estimate its own position by using the measurement value including white noise acquired by two omnidirectional cameras mounted on it. Each mobile robot is able to obtain the distance to those robots observed from the images of two omnidirectional cameras while making calibration during moving but not in advance. Simulation of three robots moving straightly shows the effectiveness of the proposed algorithm.展开更多
This paper proposes a novel fixed-time sliding mode control approach for trajectory-tracking tasks of a mecanum-wheeled omnidirectional mobile robot.First,the idea of two-phase attractors is introduced into the domain...This paper proposes a novel fixed-time sliding mode control approach for trajectory-tracking tasks of a mecanum-wheeled omnidirectional mobile robot.First,the idea of two-phase attractors is introduced into the domain of sliding mode control,and a new fixed-time sliding surface is proposed.Then,according to this sliding surface,a new type of nonsingular fast terminal sliding mode control algorithm is designed for the omnidirectional mobile robot,which can realize a fast fixed-time convergence property.The stability of the control system is proven scrupulously,and a guideline for control-parameter tuning is expounded.Finally,experiments are implemented to test the trajectory-tracking performance of the robot.Experimental results demonstrate the superiority of the proposed sliding surface and the corresponding control scheme in comparison with benchmark controllers.展开更多
This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position ...This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position correctly. However, for each mobile robot, it is impossible to know its own position correctly. Therefore, each mobile robot estimates its position from the data of sensor equipped on it. Generally, the sensor data is incorrect since there is sensor noise, etc. This research considers two types of the sensor data errors from omnidirectional camera. One is the error of white noise of the image captured by omnidirectional camera and so on. Another is the error of position and posture between two omnidirectional cameras. To solve the error of latter case, we proposed a self-position estimation algorithm for multiple mobile robots using two omnidirectional cameras and an accelerometer. On the other hand, to solve the error of the former case, this paper proposed an algorithm of cooperative position estimation for multiple mobile robots. In this algorithm, each mobile robot uses two omnidirectional cameras to observe the surrounding mobile robot and get the relative position between mobile robots. Each mobile robot estimates its position with only measurement data of each other mobile robots. The algorithm is based on a Bayesian filtering. Simulations of the proposed cooperative position estimation algorithm for multiple mobile robots are performed. The results show that position estimation is possible by only using measurement value from each other robot.展开更多
A supportive mobile robot for assisting the elderly is an emerging requirement mainly in countries like Japan where population ageing become relevant in near future.Falls related injuries are considered as a critical ...A supportive mobile robot for assisting the elderly is an emerging requirement mainly in countries like Japan where population ageing become relevant in near future.Falls related injuries are considered as a critical issue when taking into account the physical health of older people.A personal assistive robot with the capability of picking up and carrying objects for long/short distances can be used to overcome or lessen this problem.Here,we design and introduce a 3 D dynamic simulation of such an assistive robot to perform pick and place of objects through visual recognition.The robot consists of two major components;a robotic arm or manipulator to do the pick and place,and an omnidirectional wheeled robotic platform to support mobility.Both components are designed and operated according to their kinematics and dynamics and the controllers are integrated for the combined performance.The objective was to improve the accuracy of the robot at a considerably high speed.Designed mobile manipulator has been successfully tested and simulated with a stereo vision system to perform object recognition and tracking in a virtual environment resembling aroom of an elderly care.The tracking accuracy of the mobile manipulator at an average speed of 0.5 m/s is 90%and is well suited for the proposed application.展开更多
In this paper, a fuzzy behavior-based approach for a three wheeled omnidirectional mobile robot(TWOMR) navigation has been proposed. The robot has to track either static or dynamic target while avoiding either static ...In this paper, a fuzzy behavior-based approach for a three wheeled omnidirectional mobile robot(TWOMR) navigation has been proposed. The robot has to track either static or dynamic target while avoiding either static or dynamic obstacles along its path. A simple controller design is adopted, and to do so, two fuzzy behaviors "Track the Target" and "Avoid Obstacles and Wall Following" are considered based on reduced rule bases(six and five rules respectively). This strategy employs a system of five ultrasonic sensors which provide the necessary information about obstacles in the environment. Simulation platform was designed to demonstrate the effectiveness of the proposed approach.展开更多
This study investigates robot path planning for multiple agents,focusing on the critical requirement that agents can pursue concurrent pathways without collisions.Each agent is assigned a task within the environment t...This study investigates robot path planning for multiple agents,focusing on the critical requirement that agents can pursue concurrent pathways without collisions.Each agent is assigned a task within the environment to reach a designated destination.When the map or goal changes unexpectedly,particularly in dynamic and unknown environments,it can lead to potential failures or performance degradation in various ways.Additionally,priority inheritance plays a significant role in path planning and can impact performance.This study proposes a ConflictBased Search(CBS)approach,introducing a unique hierarchical search mechanism for planning paths for multiple robots.The study aims to enhance flexibility in adapting to different environments.Three scenarios were tested,and the accuracy of the proposed algorithm was validated.In the first scenario,path planning was applied in unknown environments,both stationary and mobile,yielding excellent results in terms of time to arrival and path length,with a time of 2.3 s.In the second scenario,the algorithm was applied to complex environments containing sharp corners and unknown obstacles,resulting in a time of 2.6 s,with the algorithm also performing well in terms of path length.In the final scenario,the multi-objective algorithm was tested in a warehouse environment containing fixed,mobile,and multi-targeted obstacles,achieving a result of up to 100.4 s.Based on the results and comparisons with previous work,the proposed method was found to be highly effective,efficient,and suitable for various environments.展开更多
针对四轮全向机器人数学模型中未知因数的干扰,提出了一种基于神经滑模的比例微分(Proportional plus Derivative,PD)自适应跟踪控制策略。首先,对机器人的动力学模型进行分析;其次,利用反步轨迹跟踪控制器得到虚拟速度,基于虚拟输入与...针对四轮全向机器人数学模型中未知因数的干扰,提出了一种基于神经滑模的比例微分(Proportional plus Derivative,PD)自适应跟踪控制策略。首先,对机器人的动力学模型进行分析;其次,利用反步轨迹跟踪控制器得到虚拟速度,基于虚拟输入与实际输入的误差设计PD控制器;接着,采用神经网络来逼近动力学模型中的不确定性,并利用Lyapunov定理证明了系统的稳定性。仿真和实验结果表明,该控制策略具有有效性。展开更多
基金Project of Sichuan Province Key Disci-pline Construction for Automotive Engineering (No.SZD0410)
文摘The kinematics model of an omnidirectional wheeled mobile robot (WMR) platform with 3 castor wheels was built, which includes the actuated inverse solution and the sensed forward solution. Motion simulations verify the consistency between the actuated inverse solution and the sensed forward solution. Analysis results show that the WMR possesses 3 degrees of freedom, and its motion trajectory is a straight line. The "pushing" and "pulling" motion patterns of the WMR can be generated by using different wheel orientations. It can be used in the places where the space is limited.
文摘This paper proposes a self-position estimate algorithm for the multiple mobile robots; each robot uses two omnidirectional cameras and an accelerometer. In recent years, the Great East Japan Earthquake and large-scale disasters have occurred frequently in Japan. From this, development of the searching robot which supports the rescue team to perform a relief activity at a large-scale disaster is indispensable. Then, this research has developed the searching robot group system with two or more mobile robots. In this research, the searching robot equips with two omnidirectional cameras and an accelerometer. In order to perform distance measurement using two omnidirectional cameras, each parameter of an omnidirectional camera and the position and posture between two omnidirectional cameras have to be calibrated in advance. If there are few mobile robots, the calibration time of each omnidirectional camera does not pose a problem. However, if the calibration is separately performed when using two or more robots in a disaster site, etc., it will take huge calibration time. Then, this paper proposed the algorithm which estimates a mobile robot's position and the parameter of the position and posture between two omnidirectional cameras simultaneously. The algorithm proposed in this paper extended Nonlinear Transformation (NLT) Method. This paper conducted the simulation experiment to check the validity of the proposed algorithm. In some simulation experiments, one mobile robot moves and observes the circumference of another mobile robot which has stopped at a certain place. This paper verified whether the mobile robot can estimate position using the measurement value when the number of observation times becomes 10 times in n/18 of observation intervals. The result of the simulation shows the effectiveness of the algorithm.
文摘This paper proposed an algorithm on simultaneous position estimation and calibration of omnidirectional camera parameters for a group of multiple mobile robots. It is aimed at developing of exploration and information gathering robotic system in unknown environment. Here, each mobile robot is not possible to know its own position. It can only estimate its own position by using the measurement value including white noise acquired by two omnidirectional cameras mounted on it. Each mobile robot is able to obtain the distance to those robots observed from the images of two omnidirectional cameras while making calibration during moving but not in advance. Simulation of three robots moving straightly shows the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(62003305)the Natural Science Foundation of Zhejiang Province(LQ21F030015)+1 种基金the Key Research and Development Program of Zhejiang Province(2022C03029)the Public Welfare Application Research Project of Huzhou City(2022GZ15).
文摘This paper proposes a novel fixed-time sliding mode control approach for trajectory-tracking tasks of a mecanum-wheeled omnidirectional mobile robot.First,the idea of two-phase attractors is introduced into the domain of sliding mode control,and a new fixed-time sliding surface is proposed.Then,according to this sliding surface,a new type of nonsingular fast terminal sliding mode control algorithm is designed for the omnidirectional mobile robot,which can realize a fast fixed-time convergence property.The stability of the control system is proven scrupulously,and a guideline for control-parameter tuning is expounded.Finally,experiments are implemented to test the trajectory-tracking performance of the robot.Experimental results demonstrate the superiority of the proposed sliding surface and the corresponding control scheme in comparison with benchmark controllers.
文摘This paper proposes the cooperative position estimation of a group of mobile robots, which pertbrms disaster relief tasks in a wide area. When searching the wide area, it becomes important to know a robot's position correctly. However, for each mobile robot, it is impossible to know its own position correctly. Therefore, each mobile robot estimates its position from the data of sensor equipped on it. Generally, the sensor data is incorrect since there is sensor noise, etc. This research considers two types of the sensor data errors from omnidirectional camera. One is the error of white noise of the image captured by omnidirectional camera and so on. Another is the error of position and posture between two omnidirectional cameras. To solve the error of latter case, we proposed a self-position estimation algorithm for multiple mobile robots using two omnidirectional cameras and an accelerometer. On the other hand, to solve the error of the former case, this paper proposed an algorithm of cooperative position estimation for multiple mobile robots. In this algorithm, each mobile robot uses two omnidirectional cameras to observe the surrounding mobile robot and get the relative position between mobile robots. Each mobile robot estimates its position with only measurement data of each other mobile robots. The algorithm is based on a Bayesian filtering. Simulations of the proposed cooperative position estimation algorithm for multiple mobile robots are performed. The results show that position estimation is possible by only using measurement value from each other robot.
文摘A supportive mobile robot for assisting the elderly is an emerging requirement mainly in countries like Japan where population ageing become relevant in near future.Falls related injuries are considered as a critical issue when taking into account the physical health of older people.A personal assistive robot with the capability of picking up and carrying objects for long/short distances can be used to overcome or lessen this problem.Here,we design and introduce a 3 D dynamic simulation of such an assistive robot to perform pick and place of objects through visual recognition.The robot consists of two major components;a robotic arm or manipulator to do the pick and place,and an omnidirectional wheeled robotic platform to support mobility.Both components are designed and operated according to their kinematics and dynamics and the controllers are integrated for the combined performance.The objective was to improve the accuracy of the robot at a considerably high speed.Designed mobile manipulator has been successfully tested and simulated with a stereo vision system to perform object recognition and tracking in a virtual environment resembling aroom of an elderly care.The tracking accuracy of the mobile manipulator at an average speed of 0.5 m/s is 90%and is well suited for the proposed application.
文摘In this paper, a fuzzy behavior-based approach for a three wheeled omnidirectional mobile robot(TWOMR) navigation has been proposed. The robot has to track either static or dynamic target while avoiding either static or dynamic obstacles along its path. A simple controller design is adopted, and to do so, two fuzzy behaviors "Track the Target" and "Avoid Obstacles and Wall Following" are considered based on reduced rule bases(six and five rules respectively). This strategy employs a system of five ultrasonic sensors which provide the necessary information about obstacles in the environment. Simulation platform was designed to demonstrate the effectiveness of the proposed approach.
文摘This study investigates robot path planning for multiple agents,focusing on the critical requirement that agents can pursue concurrent pathways without collisions.Each agent is assigned a task within the environment to reach a designated destination.When the map or goal changes unexpectedly,particularly in dynamic and unknown environments,it can lead to potential failures or performance degradation in various ways.Additionally,priority inheritance plays a significant role in path planning and can impact performance.This study proposes a ConflictBased Search(CBS)approach,introducing a unique hierarchical search mechanism for planning paths for multiple robots.The study aims to enhance flexibility in adapting to different environments.Three scenarios were tested,and the accuracy of the proposed algorithm was validated.In the first scenario,path planning was applied in unknown environments,both stationary and mobile,yielding excellent results in terms of time to arrival and path length,with a time of 2.3 s.In the second scenario,the algorithm was applied to complex environments containing sharp corners and unknown obstacles,resulting in a time of 2.6 s,with the algorithm also performing well in terms of path length.In the final scenario,the multi-objective algorithm was tested in a warehouse environment containing fixed,mobile,and multi-targeted obstacles,achieving a result of up to 100.4 s.Based on the results and comparisons with previous work,the proposed method was found to be highly effective,efficient,and suitable for various environments.
文摘针对四轮全向机器人数学模型中未知因数的干扰,提出了一种基于神经滑模的比例微分(Proportional plus Derivative,PD)自适应跟踪控制策略。首先,对机器人的动力学模型进行分析;其次,利用反步轨迹跟踪控制器得到虚拟速度,基于虚拟输入与实际输入的误差设计PD控制器;接着,采用神经网络来逼近动力学模型中的不确定性,并利用Lyapunov定理证明了系统的稳定性。仿真和实验结果表明,该控制策略具有有效性。