We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the thre...We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.展开更多
A strain-compensated InP-based quantum cascade laser(QCL) structure emitting at 4.6 μm is demonstrated,based on a two-phonon resonant design and grown by solid-source molecular beam epitaxy(MBE).By optimizing the...A strain-compensated InP-based quantum cascade laser(QCL) structure emitting at 4.6 μm is demonstrated,based on a two-phonon resonant design and grown by solid-source molecular beam epitaxy(MBE).By optimizing the growth parameters,a very high quality heterostructure with the lowest threshold current densities ever reported for QCLs was fabricated.Threshold current densities as low as 0.47 kA/cm^2 in pulsed operation and 0.56 kA/cm^2 in continuous-wave(cw) operation at 293 K were achieved for this state-of-the-art QCL.A minimum power consumption of 3.65 W was measured for the QCL,uncooled,with a high-reflectivity(HR) coating on its rear facet.展开更多
Studies on first GaN-based blue-violet laser diodes(LDs) in China mainland are reported.High quality GaN materials as well as GaN-based quantum wells laser structures are grown by metal-organic chemical vapor depositi...Studies on first GaN-based blue-violet laser diodes(LDs) in China mainland are reported.High quality GaN materials as well as GaN-based quantum wells laser structures are grown by metal-organic chemical vapor deposition method.The X-ray double-crystal diffraction rocking curve measurements show the full-width half maximum of 180″ and 185″ for (0002) symmetric reflection and (10 12) skew reflection,respectively.A room temperature mobility of 850cm2/(V·s) is obtained for a 3μm thick GaN film.Gain guided and ridge geometry waveguide laser diodes are fabricated with cleaved facet mirrors at room temperature under pulse current injection.The lasing wavelength is 405 9nm.A threshold current density of 5kA/cm2 and an output light power over 100mW are obtained for ridge geometry waveguide laser diodes.展开更多
A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the int...A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the internal quantum efficiency increased. For uncoated broad-area lasers, the threshold current density was as low as 144 A/cm2 (72 A/cm^2 per quantum well), and the slope efficiency was 0.2 W/A. The internal loss was 11 cm^-1 and the internal quantum efficiency was 27.1%. The maximum output power of 357 mW under continuous-wave operation at room temperature was achieved. The electrical and optical properties of the laser diode were improved.展开更多
The microcavity and the influence of nonradiative recombination can control spontaneous emission. An analytic resolution of rate equation is studied for microcavity lasers. The relationship between output properties a...The microcavity and the influence of nonradiative recombination can control spontaneous emission. An analytic resolution of rate equation is studied for microcavity lasers. The relationship between output properties and structural parameters of multi-quantum wells (MQWs) is obtained. One of the most important consequences of the increased spontaneous emission factor is the reduction of laser threshold. It is found that the characteristic curve of a "thresholdless" laser is strongly nonradiative depopulation-dependent. The light output is increased by the enhanced well number and the reduced width. In particular, there is an optimal well number corresponding to the lowest threshold current density for MQW structure in the microcavity lasers.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB632801 and 2013CB632803the National Natural Science Foundation of China under Grant Nos 61435014,61306058 and 61274094the Beijing Natural Science Foundation under Grant No 4144086
文摘We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB632801 and 2013CB632803)the National Natural Science Foundation of China(Grant Nos.61306058,61274094,and 61435014)the Beijing Natural Science Foundation(Grant No.4144086)
文摘A strain-compensated InP-based quantum cascade laser(QCL) structure emitting at 4.6 μm is demonstrated,based on a two-phonon resonant design and grown by solid-source molecular beam epitaxy(MBE).By optimizing the growth parameters,a very high quality heterostructure with the lowest threshold current densities ever reported for QCLs was fabricated.Threshold current densities as low as 0.47 kA/cm^2 in pulsed operation and 0.56 kA/cm^2 in continuous-wave(cw) operation at 293 K were achieved for this state-of-the-art QCL.A minimum power consumption of 3.65 W was measured for the QCL,uncooled,with a high-reflectivity(HR) coating on its rear facet.
文摘Studies on first GaN-based blue-violet laser diodes(LDs) in China mainland are reported.High quality GaN materials as well as GaN-based quantum wells laser structures are grown by metal-organic chemical vapor deposition method.The X-ray double-crystal diffraction rocking curve measurements show the full-width half maximum of 180″ and 185″ for (0002) symmetric reflection and (10 12) skew reflection,respectively.A room temperature mobility of 850cm2/(V·s) is obtained for a 3μm thick GaN film.Gain guided and ridge geometry waveguide laser diodes are fabricated with cleaved facet mirrors at room temperature under pulse current injection.The lasing wavelength is 405 9nm.A threshold current density of 5kA/cm2 and an output light power over 100mW are obtained for ridge geometry waveguide laser diodes.
基金supported by the Beijing Natural Science Foundation, China (Grant No. 4112058)
文摘A high power GaSb-based laser diode with lasing wavelength at 2 μm was fabricated and optimized. With the optimized epitaxial laser structure, the internal loss and the threshold current density decreased and the internal quantum efficiency increased. For uncoated broad-area lasers, the threshold current density was as low as 144 A/cm2 (72 A/cm^2 per quantum well), and the slope efficiency was 0.2 W/A. The internal loss was 11 cm^-1 and the internal quantum efficiency was 27.1%. The maximum output power of 357 mW under continuous-wave operation at room temperature was achieved. The electrical and optical properties of the laser diode were improved.
基金the National Natural Science Foundation of China(No.90201011 and 10174057)the Key Project of Chinese Ministry of Education(No.2005-105148)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20070613058)
文摘The microcavity and the influence of nonradiative recombination can control spontaneous emission. An analytic resolution of rate equation is studied for microcavity lasers. The relationship between output properties and structural parameters of multi-quantum wells (MQWs) is obtained. One of the most important consequences of the increased spontaneous emission factor is the reduction of laser threshold. It is found that the characteristic curve of a "thresholdless" laser is strongly nonradiative depopulation-dependent. The light output is increased by the enhanced well number and the reduced width. In particular, there is an optimal well number corresponding to the lowest threshold current density for MQW structure in the microcavity lasers.