Machine learning(ML)has powerful nonlinear processing and multivariate learning capabilities,so it has been widely utilised in the fatigue field.However,most ML methods are inexplicable black-box models that are diffi...Machine learning(ML)has powerful nonlinear processing and multivariate learning capabilities,so it has been widely utilised in the fatigue field.However,most ML methods are inexplicable black-box models that are difficult to apply in engineering practice.Symbolic regression(SR)is an interpretable machine learning method for determining the optimal fitting equation for datasets.In this study,domain knowledge-guided SR was used to determine a new fatigue crack growth(FCG)rate model.Three terms of the variable subtree ofΔK,R-ratio,andΔK_(th)were obtained by analysing eight traditional semi-empirical FCG rate models.Based on the FCG rate test data from other literature,the SR model was constructed using Al-7055-T7511.It was subsequently extended to other alloys(Ti-10V-2Fe-3Al,Ti-6Al-4V,Cr-Mo-V,LC9cs,Al-6013-T651,and Al-2324-T3)using multiple linear regression.Compared with the three semi-empirical FCG rate models,the SR model yielded higher prediction accuracy.This result demonstrates the potential of domain knowledge-guided SR for building the FCG rate model.展开更多
基金Supported by Sichuan Provincial Science and Technology Program(Grant No.2022YFH0075)Opening Project of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure(Grant No.HJGZ2021113)Independent Research Project of State Key Laboratory of Traction Power(Grant No.2022TPL_T03).
文摘Machine learning(ML)has powerful nonlinear processing and multivariate learning capabilities,so it has been widely utilised in the fatigue field.However,most ML methods are inexplicable black-box models that are difficult to apply in engineering practice.Symbolic regression(SR)is an interpretable machine learning method for determining the optimal fitting equation for datasets.In this study,domain knowledge-guided SR was used to determine a new fatigue crack growth(FCG)rate model.Three terms of the variable subtree ofΔK,R-ratio,andΔK_(th)were obtained by analysing eight traditional semi-empirical FCG rate models.Based on the FCG rate test data from other literature,the SR model was constructed using Al-7055-T7511.It was subsequently extended to other alloys(Ti-10V-2Fe-3Al,Ti-6Al-4V,Cr-Mo-V,LC9cs,Al-6013-T651,and Al-2324-T3)using multiple linear regression.Compared with the three semi-empirical FCG rate models,the SR model yielded higher prediction accuracy.This result demonstrates the potential of domain knowledge-guided SR for building the FCG rate model.