期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Concrete-Filled Steel Tube Arch Bridges in China 被引量:70
1
作者 Jielian Zheng Jianjun wang 《Engineering》 2018年第1期143-155,共13页
In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has bee... In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. 展开更多
关键词 concrete-filled STEEL tube (CFST) arch bridge Steel-reinforced CONCRETE arch bridge CABLE-STAYED fastening-hanging cantileverassembly VACUUM-ASSISTED pouring in-tube CONCRETE Adjusting load by stay cables
下载PDF
Recent Construction Technology Innovations and Practices for Large-Span Arch Bridges in China
2
作者 Jielian Zheng 《Engineering》 SCIE EI CAS 2024年第10期110-129,共20页
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ... Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed. 展开更多
关键词 concrete-filled steel tubular arch bridges Steel-reinforced concrete arch bridges Cable-stayed fastening-hanging cantilevered assembly Non-rocky thrust abutment foundation Stiff skeleton Encasing concrete pouring Longitudinal reinforcement optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部