Presents the study on the pressure and friction fields of the lubricant film on the surface of a large thrust elastic metal plastic bearing bush in a hydraulic turbine using the method of finite element analysis and t...Presents the study on the pressure and friction fields of the lubricant film on the surface of a large thrust elastic metal plastic bearing bush in a hydraulic turbine using the method of finite element analysis and the stress and displacement fields in the vertical direction of the bush surface obtained to provide a theoretical basis for the design of contour lines and investigation into the causes for destruction of bushes, and concludes with test results that 1) the stress on the surface of the bush is not uniform; 2) a tension stress tends to occur near the oil ingress and egress edges but it is minor; 3) the biggest displacement in the vertical direction appears where x=84 and Y=1 153 and has a value of 0.022 mm; 4) the deformation of the bearing bush is harmful to the maintenance of lubricant film.展开更多
Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific mult...Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific multi-layer gas foil thrust bearing on the continuous loading process within a steady rotational speed is numerically investigated by a three-dimensional thermal-fluid–solid coupling method.Results indicate that the multi-layer foil exhibits nonlinear overall stiffness,with the thrust bottom foil serving as the primary elastic deformation structure,while the thrust top foil maintains a well-defined aerodynamic shape during a loading process,which helps reduce frictional damage and achieve an adequate loading capacity.For low loads,the fluctuation of the gas film is extremely sensitive,and it weakens dramatically as the load increases.The viscous heating and friction torque exhibit a linear relationship with an increasing bearing load after a rapid growth.Depending on the exact stacking sequence and contact position of the multi-layer gas foil,the overlapping configuration allows for efficient transfer of viscous-shearing heat accumulated at the smallest air film through thermal conduction while providing elastic support.Due to the strong inhomogeneity of the viscous heat under varying loads,the temperature distribution on the top foil surface shows pronounced variations,while the difference between the peak and average temperatures of the thrust plate and top foil surfaces widens substantially with an increasing load.展开更多
Sub-surface crack networks in areas of altered microstructure are a common cause for bearing failures.Due to its appearance under light microscopy,the damage pattern is referred to as White Etching Cracks(WEC).The roo...Sub-surface crack networks in areas of altered microstructure are a common cause for bearing failures.Due to its appearance under light microscopy,the damage pattern is referred to as White Etching Cracks(WEC).The root causes leading to the formation of WEC are still under debate.Nevertheless,it has already been shown that atomic hydrogen can have an accelerating effect on the formation and propagation of WEC.In addition to hydrogen pre-charging,hydrogen can be released and absorbed during rolling/sliding due to the decomposing of the lubricant and water.The current work focuses on the analysis of the hydrogen content of cylindrical roller thrust bearings after testing in a FE8 type test rig using two different lubricants.Within the framework of this work,two different hydrogen analysis methods were used and assessed regarding their applicability.The results show that the so-called Hydrogen Collecting Analysis(HCA)is more suitable to investigate the correlation between lubricant chemistry and hydrogen content in the test bearings than the Local Hydrogen Analysis(LHA).The measurements with the HCA show a continuously increasing freely movable and diffusible hydrogen content under tribological conditions,which leads to the formation of WEC.Comparative tests with an oil without hydrogen showed that the tendency of the system to fail as a result of WEC can be reduced by using a lubricant without hydride compounds.展开更多
文摘Presents the study on the pressure and friction fields of the lubricant film on the surface of a large thrust elastic metal plastic bearing bush in a hydraulic turbine using the method of finite element analysis and the stress and displacement fields in the vertical direction of the bush surface obtained to provide a theoretical basis for the design of contour lines and investigation into the causes for destruction of bushes, and concludes with test results that 1) the stress on the surface of the bush is not uniform; 2) a tension stress tends to occur near the oil ingress and egress edges but it is minor; 3) the biggest displacement in the vertical direction appears where x=84 and Y=1 153 and has a value of 0.022 mm; 4) the deformation of the bearing bush is harmful to the maintenance of lubricant film.
基金the financial supports provided by the Natural Science Fund of Jiangsu Province,China(No.BK20200448)the Postdoctoral Science Foundation of China(No.2020TQ0143)。
文摘Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific multi-layer gas foil thrust bearing on the continuous loading process within a steady rotational speed is numerically investigated by a three-dimensional thermal-fluid–solid coupling method.Results indicate that the multi-layer foil exhibits nonlinear overall stiffness,with the thrust bottom foil serving as the primary elastic deformation structure,while the thrust top foil maintains a well-defined aerodynamic shape during a loading process,which helps reduce frictional damage and achieve an adequate loading capacity.For low loads,the fluctuation of the gas film is extremely sensitive,and it weakens dramatically as the load increases.The viscous heating and friction torque exhibit a linear relationship with an increasing bearing load after a rapid growth.Depending on the exact stacking sequence and contact position of the multi-layer gas foil,the overlapping configuration allows for efficient transfer of viscous-shearing heat accumulated at the smallest air film through thermal conduction while providing elastic support.Due to the strong inhomogeneity of the viscous heat under varying loads,the temperature distribution on the top foil surface shows pronounced variations,while the difference between the peak and average temperatures of the thrust plate and top foil surfaces widens substantially with an increasing load.
基金The authors would like to thank the ResearchAssociation for Drive Technology (FVA) for thefunding and support from the research work throughthe research project FVA 707 IV
文摘Sub-surface crack networks in areas of altered microstructure are a common cause for bearing failures.Due to its appearance under light microscopy,the damage pattern is referred to as White Etching Cracks(WEC).The root causes leading to the formation of WEC are still under debate.Nevertheless,it has already been shown that atomic hydrogen can have an accelerating effect on the formation and propagation of WEC.In addition to hydrogen pre-charging,hydrogen can be released and absorbed during rolling/sliding due to the decomposing of the lubricant and water.The current work focuses on the analysis of the hydrogen content of cylindrical roller thrust bearings after testing in a FE8 type test rig using two different lubricants.Within the framework of this work,two different hydrogen analysis methods were used and assessed regarding their applicability.The results show that the so-called Hydrogen Collecting Analysis(HCA)is more suitable to investigate the correlation between lubricant chemistry and hydrogen content in the test bearings than the Local Hydrogen Analysis(LHA).The measurements with the HCA show a continuously increasing freely movable and diffusible hydrogen content under tribological conditions,which leads to the formation of WEC.Comparative tests with an oil without hydrogen showed that the tendency of the system to fail as a result of WEC can be reduced by using a lubricant without hydride compounds.