Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,...Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,which,in turn,affect the intrinsic activity of 2D materials.Density functional theory calculations were used to systematically explore the potential of O-terminated V2C MXene(V_(2)CO_(2))-supported transition metal(TM)SAs,including a series of 3d,4d,and 5d metals,as oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR)catalysts.The combination of TM SAs and V_(2)CO_(2)changes their electronic structure and enriches the active sites,and consequently regulates the intermediate adsorption energy and catalytic activity for ORR and HOR.Among the investigated TM-V_(2)CO_(2)models,Sc-,Mn-,Rh-,and PtMCCh showed high ORR activity,while Sc-,Ti-,V-,Cr-,and Mn-V_(2)CO_(2)exhibited high HOR activity.Specifically,Mn-and Sc-V_(2)CO_(2)are expected to serve as highly efficient and cost-effective bifunctional catalysts for fuel cells because of their high catalytic activity and stability.This work provides theoretical guidance for the rational design of efficient ORR and HOR bifunctional catalysts.展开更多
Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considere...Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considered: substitution of Ti for W6c and substitution of Ti for Wsc. The results reveal that substitution of Ti for 5-fold W forms a stable doping structure, and doping induces some new electronic states in the band gap, which may lead to changes in the surface properties. Four top adsorption models of NO2 on pure and Ti-doped WO3 (002) surfaces are investigated: adsorptions on 5-fold W (Ti), on 6-fold W, on bridging oxygen, and on plane oxygen. The most stable and likely NO2 adsorption structures are both N-end oriented to the surface bridge oxygen Olc site. By comparing the adsorption energy and the electronic population, it is found that Ti doping can enhance the adsorption of NO2, which theoretically proves the experimental observation that Ti doping can greatly increase the WO3 gas sensor sensitivity to NO2 gas.展开更多
The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fab...The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fabricated using transition‐metal(TM)atoms(TM=Sc−Zn)doped into g‐CN monolayers.The electrochemical mechanism of APCs for an NRR has been reported by well‐defined density functional theory calculations.The calculated limiting potentials were−0.47 and−0.78 V for the Fe_(2)@CN and Co_(2)@CN catalysts,respectively.Owing to its high suppression of hydrogen evolution reactions,Co_(2)@CN is a superior electrocatalytic material for a N_(2)fixation.Stable Fe_(2)@CN may be a strongly attractive material for an NRR with a relatively low overpotential after an improvement in the selectivity.The two‐way charge transfer affirmed the donation‐acceptance procedure between N_(2)and Fe_(2)@CN or Co_(2)@CN,which play a crucial role in the activation of inert N≡N bonds.This study provides an in‐depth investigation into atom‐pair catalysts and will open up new avenues for highly efficient g‐CN‐based nanostructures for an NRR.展开更多
The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) wit...The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) with Gaussian 03. Based on these data, the isodesmic reacflons are designed to calculate the standard enthalpy of formation (△fH^θ) and the standard Gibbs energy of formation (△fG^θ) of PBDTs. The relations of these thermodynamic parameters with the number and positionof bromine subsfituents (NPBS) are discussed, and it is found that there exist good correlations between othermody namic parameters (including heat capacity at constant volume, entropy, enthaipy, free energy, △fH^θ, △fG^θ) and NPBS. Thoe relative stability order of PBDT congeners is proposed theoretically based on the relative magnitude of their △fG^θ. In addition, the values of molar heat capacities at constant pressure (Cp,m) for PBDT c ongelaers are calculated.展开更多
The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 pr...The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.展开更多
Density functional theory (DFT) calculations are conducted to explore the interaction of H2 with pure and Tidoped WO3 (002) surfaces. Four top adsorption models of H2 on pure and Ti-doped WO3 (002) surfaces are ...Density functional theory (DFT) calculations are conducted to explore the interaction of H2 with pure and Tidoped WO3 (002) surfaces. Four top adsorption models of H2 on pure and Ti-doped WO3 (002) surfaces are investigated respectively, they are adsorption on bridging oxygen Olc, absorption on plane oxygen O2c, absorption on 5-fold W5c (Ti), and absorption on 6-fold W6c. The most stable and H2 possible adsorption structure in the pure surface is H-end oriented to the surface plane oxygen O2c site, while the favourable adsorption sites for H2 in a Ti-doped surface is not only an O2c site but also a W6c site. The adsorption energy, the Fermi energy level EF, and the electronic population are investigated and the H2-sensing mechanism of a pure-doped WO3 (002) surface is revealed theoretically: the theoretical results are in good accordance with our existing experimental results. By comparing the above three terms, it is found that Ti doping can obviously enhance the adsorption of H2. It can be predicted that the method of Ti-doped into a WO3 thin film is an effective way to improve WO3 sensor sensitivity to H2 gas.展开更多
In this paper, we perform the density functional theory (DFT) -based calculations by the first-principles pseudopo- tential method to investigate the physical properties of the newly discovered superconductor LaRu2A...In this paper, we perform the density functional theory (DFT) -based calculations by the first-principles pseudopo- tential method to investigate the physical properties of the newly discovered superconductor LaRu2As2 for the first time. The optimized structural parameters are in good agreement with the experimental results. The calculated independent elas- tic constants ensure the mechanical stability of the compound. The calculated Cauchy pressure, Pugh's ratio as well as Poisson's ratio indicate that LaRu2As2 should behave as a ductile material. Due to low Debye temperature, LaRu2As2 may be used as a thermal barrier coating (TBC) material. The new compound should exhibit metallic nature as its valence bands overlap considerably with the conduction bands. LaRu2As2 is expected to be a soft material and easily machinable because of its low hardness value of 6.8 GPa. The multi-band nature is observed in the calculated Fermi surface. A highly anisotropic combination of ionic, covalent and metallic interactions is expected to be in accordance with charge density calculation.展开更多
On the basis of a more precise expression of the atomic effective electronegativity deduced from the density functional theory and electronegativity equalization principle, a new scheme for calculating the group elect...On the basis of a more precise expression of the atomic effective electronegativity deduced from the density functional theory and electronegativity equalization principle, a new scheme for calculating the group electronegativity and the atomic charges in a group is proposed and programed, and various parameters of electronegativity and hardness are given for some common atoms. Through calculation, analysis and comparison of more than one hundred groups, it is shown that the results from this scheme are reasonable and may be extended.展开更多
This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1- 14) by means of the density-functional theory. The results show that the lowest-energy structure...This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1- 14) by means of the density-functional theory. The results show that the lowest-energy structures undergo a structural change from two-dimensional to three-dimensional when n : 4. With the increase of the cluster size (n=6), the (BAs)n clusters tend to adopt cage-like structures, which can be considered as being built from B2As2 and six-membered rings with B-As bond alternative arrangement. The binding energy per atom, second-order energy differences, vertical electron affinity and vertical ionization potential are calculated and discussed. The caculated HOMO-LUMO gaps reveal that the clusters have typical semiconductor characteristics. The analysis of partial density of states suggests that there are strong covalence and molecular characteristics in the clusters.展开更多
The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performan...The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.展开更多
The adsorption of C atoms on the α-Fe2O3(001) surface was studied based on density function theory(DFT) ,in which the exchange-correlation potential was chosen as the PBE(Perdew,Burke and Ernzerhof) generalized...The adsorption of C atoms on the α-Fe2O3(001) surface was studied based on density function theory(DFT) ,in which the exchange-correlation potential was chosen as the PBE(Perdew,Burke and Ernzerhof) generalized gradient approximation(GGA) with a plane wave basis set. Upon the optimization on different adsorption sites with coverage of 1/20 and 1/5 ML,it was found that the adsorption of C atoms on the α-Fe2O3(001) surface was chemical adsorption. The coverage can affect the adsorption behavior greatly. Under low coverage,the most stable adsorption geometry lied on the bridged site with the adsorption energy of about 3.22 eV; however,under high coverage,it located at the top site with the energy change of 8.79 eV. Strong chemical reaction has occurred between the C and O atoms at this site. The density of states and population analysis showed that the s,p orbitals of C and p orbital of O give the most contribution to the adsorption bonding. During the adsorption process,O atom shares the electrons with C,and C can only affect the outermost and subsurface layers of α-Fe2O3; the third layer can not be affected obviously.展开更多
By using first-principles simulations based on time-dependent density functional theory,the chemical reaction of an HCl molecule encapsulated in C60induced by femtosecond laser pulses is observed.The H atom starts to ...By using first-principles simulations based on time-dependent density functional theory,the chemical reaction of an HCl molecule encapsulated in C60induced by femtosecond laser pulses is observed.The H atom starts to leave the Cl atom and is reflected by the C60wall.The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H–Cl bond axis are investigated.The radial oscillation is also found in the two polarization directions of the laser pulse.The relaxation time of the H–Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization.Those results are important for studying the dynamics of the chemical bond at an atomic level.展开更多
The effects of axial ligand on the oxygen atom transfer(OAT)reaction from 5,10,15-tris(pentafluorophenyl)corrole((tpfc)MnVO)to dimethyl sulfide(DMS)have been investigated by density functional theory(DFT)calculations....The effects of axial ligand on the oxygen atom transfer(OAT)reaction from 5,10,15-tris(pentafluorophenyl)corrole((tpfc)MnVO)to dimethyl sulfide(DMS)have been investigated by density functional theory(DFT)calculations.Imidazole(Im),4-methylimidazole(4-MI)and pyridine(Py)were selected as the axial ligands.The results revealed that the axial ligand can form coordinate bond with(tpfc)MnVO in the transition state(TS)of the OAT reaction.The axial coordination favored charge transferring from(tpfc)MnVO to DMS,and weakened the Mn≡O bond in both singlet and triplet states.Furthermore,axial coordination can reduce the energy barrier of neutral(tpfc)MnVO from 23.62 kJ·mol^-1 to less than 3 kJ·mol^-1 in the triplet state,which is significantly lower than in the singlet state.This makes(tpfc)MnVO tend to direct the OAT reaction via triplet state pathway.On the other hand,the energy barriers of[(tpfc)MnVIO]+species from disproportionation pathway increased from 1.26 to 33.95 kJ·mol^-1 in a doublet state.This suggests axial ligands were conducive for direct(tpfc)MnVO OAT reaction pathway.展开更多
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc...Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.展开更多
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a...The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.展开更多
The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur- face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave appro...The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur- face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave approach. The adsorption energy calculated is about -0.72 eV for the lithium on top of the surface O site and about one third of this value for the other alkali metals. The relatively strong interaction of Li with the surface O can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the charge density difference. The bonding mechanism is discussed in detail for all alkali metals.展开更多
The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H...The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.展开更多
20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the ...20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-lgEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R^2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -lgEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q^2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.展开更多
文摘Two-dimensional(2D)MXene and single-atom(SA)catalysts are two frontier research fields in catalysis.2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs,which,in turn,affect the intrinsic activity of 2D materials.Density functional theory calculations were used to systematically explore the potential of O-terminated V2C MXene(V_(2)CO_(2))-supported transition metal(TM)SAs,including a series of 3d,4d,and 5d metals,as oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR)catalysts.The combination of TM SAs and V_(2)CO_(2)changes their electronic structure and enriches the active sites,and consequently regulates the intermediate adsorption energy and catalytic activity for ORR and HOR.Among the investigated TM-V_(2)CO_(2)models,Sc-,Mn-,Rh-,and PtMCCh showed high ORR activity,while Sc-,Ti-,V-,Cr-,and Mn-V_(2)CO_(2)exhibited high HOR activity.Specifically,Mn-and Sc-V_(2)CO_(2)are expected to serve as highly efficient and cost-effective bifunctional catalysts for fuel cells because of their high catalytic activity and stability.This work provides theoretical guidance for the rational design of efficient ORR and HOR bifunctional catalysts.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60771019 and 60801018)Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300)+1 种基金Tianjin Natural Science Foundation, China (Grant No. 09JCYBJC01100)the New Teacher Foundation of the Ministry of Education, China(Grant No. 200800561109)
文摘Density functional theory (DFT) calculations are employed to explore the NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces. When Ti is doped into the WO3 surface, two substitution models are considered: substitution of Ti for W6c and substitution of Ti for Wsc. The results reveal that substitution of Ti for 5-fold W forms a stable doping structure, and doping induces some new electronic states in the band gap, which may lead to changes in the surface properties. Four top adsorption models of NO2 on pure and Ti-doped WO3 (002) surfaces are investigated: adsorptions on 5-fold W (Ti), on 6-fold W, on bridging oxygen, and on plane oxygen. The most stable and likely NO2 adsorption structures are both N-end oriented to the surface bridge oxygen Olc site. By comparing the adsorption energy and the electronic population, it is found that Ti doping can enhance the adsorption of NO2, which theoretically proves the experimental observation that Ti doping can greatly increase the WO3 gas sensor sensitivity to NO2 gas.
文摘The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fabricated using transition‐metal(TM)atoms(TM=Sc−Zn)doped into g‐CN monolayers.The electrochemical mechanism of APCs for an NRR has been reported by well‐defined density functional theory calculations.The calculated limiting potentials were−0.47 and−0.78 V for the Fe_(2)@CN and Co_(2)@CN catalysts,respectively.Owing to its high suppression of hydrogen evolution reactions,Co_(2)@CN is a superior electrocatalytic material for a N_(2)fixation.Stable Fe_(2)@CN may be a strongly attractive material for an NRR with a relatively low overpotential after an improvement in the selectivity.The two‐way charge transfer affirmed the donation‐acceptance procedure between N_(2)and Fe_(2)@CN or Co_(2)@CN,which play a crucial role in the activation of inert N≡N bonds.This study provides an in‐depth investigation into atom‐pair catalysts and will open up new avenues for highly efficient g‐CN‐based nanostructures for an NRR.
基金Supported by the National Natural Science Foundation of China (20737001).
文摘The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) with Gaussian 03. Based on these data, the isodesmic reacflons are designed to calculate the standard enthalpy of formation (△fH^θ) and the standard Gibbs energy of formation (△fG^θ) of PBDTs. The relations of these thermodynamic parameters with the number and positionof bromine subsfituents (NPBS) are discussed, and it is found that there exist good correlations between othermody namic parameters (including heat capacity at constant volume, entropy, enthaipy, free energy, △fH^θ, △fG^θ) and NPBS. Thoe relative stability order of PBDT congeners is proposed theoretically based on the relative magnitude of their △fG^θ. In addition, the values of molar heat capacities at constant pressure (Cp,m) for PBDT c ongelaers are calculated.
基金the National Natural Science Foundation of China(No.20737001 and 20477018)
文摘The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.
基金supported by the National Natural Science Foundation of China (Grant Nos.60771019 and 60801018)the Tianjin Key Research Program of Application Foundation and Advanced Technology,China (Grant No.11JCZDJC15300)+1 种基金the Tianjin Natural Science Foundation,China (Grant No.09JCYBJC01100)the New Teacher Foundation of the Ministry of Education,China (Grant No.200800561109)
文摘Density functional theory (DFT) calculations are conducted to explore the interaction of H2 with pure and Tidoped WO3 (002) surfaces. Four top adsorption models of H2 on pure and Ti-doped WO3 (002) surfaces are investigated respectively, they are adsorption on bridging oxygen Olc, absorption on plane oxygen O2c, absorption on 5-fold W5c (Ti), and absorption on 6-fold W6c. The most stable and H2 possible adsorption structure in the pure surface is H-end oriented to the surface plane oxygen O2c site, while the favourable adsorption sites for H2 in a Ti-doped surface is not only an O2c site but also a W6c site. The adsorption energy, the Fermi energy level EF, and the electronic population are investigated and the H2-sensing mechanism of a pure-doped WO3 (002) surface is revealed theoretically: the theoretical results are in good accordance with our existing experimental results. By comparing the above three terms, it is found that Ti doping can obviously enhance the adsorption of H2. It can be predicted that the method of Ti-doped into a WO3 thin film is an effective way to improve WO3 sensor sensitivity to H2 gas.
文摘In this paper, we perform the density functional theory (DFT) -based calculations by the first-principles pseudopo- tential method to investigate the physical properties of the newly discovered superconductor LaRu2As2 for the first time. The optimized structural parameters are in good agreement with the experimental results. The calculated independent elas- tic constants ensure the mechanical stability of the compound. The calculated Cauchy pressure, Pugh's ratio as well as Poisson's ratio indicate that LaRu2As2 should behave as a ductile material. Due to low Debye temperature, LaRu2As2 may be used as a thermal barrier coating (TBC) material. The new compound should exhibit metallic nature as its valence bands overlap considerably with the conduction bands. LaRu2As2 is expected to be a soft material and easily machinable because of its low hardness value of 6.8 GPa. The multi-band nature is observed in the calculated Fermi surface. A highly anisotropic combination of ionic, covalent and metallic interactions is expected to be in accordance with charge density calculation.
基金Project supported by the National Natural Science Foundation of Chinathe Foundation of State Education Commission of China
文摘On the basis of a more precise expression of the atomic effective electronegativity deduced from the density functional theory and electronegativity equalization principle, a new scheme for calculating the group electronegativity and the atomic charges in a group is proposed and programed, and various parameters of electronegativity and hardness are given for some common atoms. Through calculation, analysis and comparison of more than one hundred groups, it is shown that the results from this scheme are reasonable and may be extended.
基金supported by the National Natural Science Foundation of China (Grant No. 10964012)the Priority Subject Program for Theoretical Physics of Xinjiang Normal University and the Fund of the Education Department of Xinjiang Uygur Autonomous Region of China (Grant No. xjedu2009i27)the Science and Technology Innovation Foundation for Graduate Students of Xinjiang Normal University (Grant No. 20101205)
文摘This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1- 14) by means of the density-functional theory. The results show that the lowest-energy structures undergo a structural change from two-dimensional to three-dimensional when n : 4. With the increase of the cluster size (n=6), the (BAs)n clusters tend to adopt cage-like structures, which can be considered as being built from B2As2 and six-membered rings with B-As bond alternative arrangement. The binding energy per atom, second-order energy differences, vertical electron affinity and vertical ionization potential are calculated and discussed. The caculated HOMO-LUMO gaps reveal that the clusters have typical semiconductor characteristics. The analysis of partial density of states suggests that there are strong covalence and molecular characteristics in the clusters.
文摘The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.
基金Project supported by the Foundation for Key Program of Ministry of Education (Nos.108033 and 107119)State Key Development Program for Basic Research of China (No.2009CB219801)+4 种基金the National High Technology Research and Development Program of China (No.2008AA05Z302)NNSFC (No.50976032)NSF of Beijing (No.3101001)the Specialized Basic Research Fund for Center Higher Education (No.09ZG03)Doctor Fund of North China Electric Power University (No.200822015)
文摘The adsorption of C atoms on the α-Fe2O3(001) surface was studied based on density function theory(DFT) ,in which the exchange-correlation potential was chosen as the PBE(Perdew,Burke and Ernzerhof) generalized gradient approximation(GGA) with a plane wave basis set. Upon the optimization on different adsorption sites with coverage of 1/20 and 1/5 ML,it was found that the adsorption of C atoms on the α-Fe2O3(001) surface was chemical adsorption. The coverage can affect the adsorption behavior greatly. Under low coverage,the most stable adsorption geometry lied on the bridged site with the adsorption energy of about 3.22 eV; however,under high coverage,it located at the top site with the energy change of 8.79 eV. Strong chemical reaction has occurred between the C and O atoms at this site. The density of states and population analysis showed that the s,p orbitals of C and p orbital of O give the most contribution to the adsorption bonding. During the adsorption process,O atom shares the electrons with C,and C can only affect the outermost and subsurface layers of α-Fe2O3; the third layer can not be affected obviously.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074176 and 10976019)the Doctoral Program of Higher Education of China(Grant No.20100181110080)
文摘By using first-principles simulations based on time-dependent density functional theory,the chemical reaction of an HCl molecule encapsulated in C60induced by femtosecond laser pulses is observed.The H atom starts to leave the Cl atom and is reflected by the C60wall.The coherent nuclear dynamic behaviors of bond breakage and recombination of the HCl molecule occurring in both polarized parallel and perpendicular to the H–Cl bond axis are investigated.The radial oscillation is also found in the two polarization directions of the laser pulse.The relaxation time of the H–Cl bond lengths in transverse polarization is slow in comparison with that in longitudinal polarization.Those results are important for studying the dynamics of the chemical bond at an atomic level.
基金supported by the National Natural Science Foundation of China(21275057,21671068)Natural Science Foundation of Guangdong Province(S2012010008763,2017A050506048)
文摘The effects of axial ligand on the oxygen atom transfer(OAT)reaction from 5,10,15-tris(pentafluorophenyl)corrole((tpfc)MnVO)to dimethyl sulfide(DMS)have been investigated by density functional theory(DFT)calculations.Imidazole(Im),4-methylimidazole(4-MI)and pyridine(Py)were selected as the axial ligands.The results revealed that the axial ligand can form coordinate bond with(tpfc)MnVO in the transition state(TS)of the OAT reaction.The axial coordination favored charge transferring from(tpfc)MnVO to DMS,and weakened the Mn≡O bond in both singlet and triplet states.Furthermore,axial coordination can reduce the energy barrier of neutral(tpfc)MnVO from 23.62 kJ·mol^-1 to less than 3 kJ·mol^-1 in the triplet state,which is significantly lower than in the singlet state.This makes(tpfc)MnVO tend to direct the OAT reaction via triplet state pathway.On the other hand,the energy barriers of[(tpfc)MnVIO]+species from disproportionation pathway increased from 1.26 to 33.95 kJ·mol^-1 in a doublet state.This suggests axial ligands were conducive for direct(tpfc)MnVO OAT reaction pathway.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF‐2019M3D1A1079303,NRF‐2021R1A2C1011415,NRF‐2021R1A2C3004019。
文摘Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.
文摘The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.
文摘The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur- face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave approach. The adsorption energy calculated is about -0.72 eV for the lithium on top of the surface O site and about one third of this value for the other alkali metals. The relatively strong interaction of Li with the surface O can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the charge density difference. The bonding mechanism is discussed in detail for all alkali metals.
基金This work was supported by the Chinese Academy of Sciences (Hundred Talents Fund), the National Natural Science Foundation of China (No.20703048 and No.20803083), and the Center of Molecular Science Foundation of Institute of Chemistry, Chinese Academy of Sciences (No.CMS-LX200902).
文摘The reactions of anionic zirconium oxide clusters ZrxOy- with C2H6 and C4H10 are investi-gated by a time of flight mass spectrometer coupled with a laser vaporization cluster source.Hydrogen containing products Zr2O5H- and Zr3O7H- are observed after the reaction. Den-sity functional theory calculations indicate that the hydrogen abstraction is favorable in the reaction of Zr2O5- with C2H6, which supports that the observed Zr2O5H- and Zr3O7H- are due to hydrogen atom abstraction from the alkane molecules. This work shows a newpossible pathway in the reaction of zirconium oxide cluster anions with alkane molecules.
基金973 National Basic Research Program of China (2003CB415002)
文摘20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-lgEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R^2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -lgEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q^2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.