The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is ...The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.展开更多
为提升PbO_2电极的寿命,降低电极阻抗,利用直流电沉积法制备了2种添加中间层的钛基PbO_2电极,并研究了其电催化氧化降解煤化工废水的效能。结果表明:向钛基PbO_2电极添加锡锑氧化物和二氧化钛纳米管中间层,使PbO_2电极的使用寿命分别提...为提升PbO_2电极的寿命,降低电极阻抗,利用直流电沉积法制备了2种添加中间层的钛基PbO_2电极,并研究了其电催化氧化降解煤化工废水的效能。结果表明:向钛基PbO_2电极添加锡锑氧化物和二氧化钛纳米管中间层,使PbO_2电极的使用寿命分别提高到未添加中间层电极的209倍和301倍,阻抗分别降低至未添加中间层电极的11. 58%和6. 20%。在20 m A/cm^2电流密度下处理煤化工废水,与未添加中间层的电极相比,添加锡锑氧化物中间层的钛基PbO_2电极对COD、总酚的去除率变化不大,而添加二氧化钛纳米管中间层的钛基PbO_2电极对COD、总酚的去除率略有降低。由于锡锑氧化物中间层有效改进了电极性能,建议在使用钛基PbO_2电极电催化氧化降解煤化工废水时添加锡锑氧化物中间层。展开更多
基金financially supported by the National Natural Science Foundation of China(No.41372102)the National Basic Research Program of China(No.2014CB440803)the China Geological Survey(No.DD20160071)
文摘The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.
文摘为提升PbO_2电极的寿命,降低电极阻抗,利用直流电沉积法制备了2种添加中间层的钛基PbO_2电极,并研究了其电催化氧化降解煤化工废水的效能。结果表明:向钛基PbO_2电极添加锡锑氧化物和二氧化钛纳米管中间层,使PbO_2电极的使用寿命分别提高到未添加中间层电极的209倍和301倍,阻抗分别降低至未添加中间层电极的11. 58%和6. 20%。在20 m A/cm^2电流密度下处理煤化工废水,与未添加中间层的电极相比,添加锡锑氧化物中间层的钛基PbO_2电极对COD、总酚的去除率变化不大,而添加二氧化钛纳米管中间层的钛基PbO_2电极对COD、总酚的去除率略有降低。由于锡锑氧化物中间层有效改进了电极性能,建议在使用钛基PbO_2电极电催化氧化降解煤化工废水时添加锡锑氧化物中间层。