Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 ...Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 electrode, while short-circuit photocurrent (Isc) was varied with the ratio of the TiO2. Appropriate content of the TiO2 can be beneficial to the efficiency of the solar cell, and it gives negative impact on the composite electrode when the content of TiO2 is higher.展开更多
The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particl...The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particles on the surface of TiO2 electrode extends the optical absorptionspectrum and photocurrent action specmim into visible region. In addition, compared with RuS2 bulknlaterials- a blue shifi in both absorption spectrum and photocurrent action speCtrum of RuS2rriO2elcctrode is obserived and explained in terms of quantum sized effect.展开更多
A dye-sensitized nanocrystalline TiO 2 solar cell(DYSC) was assembled, of which counter electrode was modified already by platinum, nickel and carbon. It was found that the DYSC had better photoelectric performanc...A dye-sensitized nanocrystalline TiO 2 solar cell(DYSC) was assembled, of which counter electrode was modified already by platinum, nickel and carbon. It was found that the DYSC had better photoelectric performance when the electrode was modified by platinum than by nickel and carbon. The influence of the incidence light wavelength on the incidence monochromatic photoelectric conversion efficiency(IPCE) was investigated. The result shows that the IPCE mainly depends on the short-circuit current density(I SC) of a DYSC, and the IPCE reaches 48.32% under the irradiation with the wavelength of 560 nm when the counter electrode of a DYSC was modified by platinum. The influence of incident light intensity on the photoelectric properties of a DYSC was also investigated. It was found that the I SC and open-circuit voltage(V OC) increased and the fill factor(f f) of the DYSC decreased with the increase of the incident light intensity.展开更多
The degradation of ethinylestradiol (EE, an orally bio-active estrogen) in an aqueous-methanolic solution using a Ti/TiO2 thin-film electrode and UV radiation (a photoelectrocatalytic system) was evaluated. Hence, HPL...The degradation of ethinylestradiol (EE, an orally bio-active estrogen) in an aqueous-methanolic solution using a Ti/TiO2 thin-film electrode and UV radiation (a photoelectrocatalytic system) was evaluated. Hence, HPLC/UV analysis shows that EE (at 0.34 mmol) is totally consumed after 30 minutes of exposure to the photoelectrocatalytic system in the presence of Na2SO4 (0.1 mol·L-1) and with an applied bias potential of +1.0 V versus the Ag/AgCl reference electrode. Moreover, monitoring by direct infusion electrospray ionization mass spectrometry (ESI-MS) and SPME-GC/ MS (solid phase microextraction coupled with gas chromatography-mass spectrometry) reveals that apparently no degradation products are formed under these conditions. Hence, this study demonstrates that the photoelectrocatalytic system can be efficiently used to promote the complete degradation (and likely mineralization) of this hormone under these conditions.展开更多
Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. T...Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. The morphology of TiO2 electrode is one of the most important factors in QDSSCs. Inverse opal (IO) TiO2 electrode, which has periodic mesoporous structure, is useful for QDSSCs because of better penetration of electrolyte than conventional nanoparticulate TiO2 electrode. In addition, the ordered three dimensional structure of IO-TiO2 would be better for electron transport. We have found that open circuit voltage Voc of QDSSCs with IO-TiO2 electrodes was much higher (0.2 V) than that with nanoparticulate TiO2 electrodes. But short circuit current density Jsc was lower in the case of IO-TiO2 electrodes because of the smaller surface area of IO-TiO2. In this study, for increasing surface area of IO-TiO2, we applied TiCl4 post treatment on IO-TiO2 and investigated the effect of the post treatment on photovoltaic properties of CdSe QD sensitized IO-TiO2 solar cells. It was found that Jsc could be enhanced due to TiCl4 post treatment, but decreased again for more than one cycle treatment, which indicates excess post treatment may lead to worse penetration of electrolyte. Our results indicate that the appropriate post treatment can improve the energy conversion efficiency of the QDSSCs.展开更多
The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth...The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO_2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO_2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 10~4 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO_2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based Re RAM device in the future.展开更多
A new type of dye-sensitized nanocrystalline solid state photovoltaic cell based on the wide band gap n-TiO2/p-CuI heterojunction was fabricated. Tetra-carboxyphenyl porphyrine (TPP-(COOH)(4)), squarylium cyanine deri...A new type of dye-sensitized nanocrystalline solid state photovoltaic cell based on the wide band gap n-TiO2/p-CuI heterojunction was fabricated. Tetra-carboxyphenyl porphyrine (TPP-(COOH)(4)), squarylium cyanine derivative (SQ-(CH2),(SO3Py+)-Py-.) and ruthenium bipyridyl complex (RuL2(NCS)(2)) were used as photosensitizers. Larger photocurrents and photovoltages were shown in the cell sensitized by ruthenium bipyridyl complex and can be further increased by intercalation of a TiO2 thin underlayer.展开更多
Two kinds of Ru(Ⅱ)-bipyridine complexes, cis-di(thiocyanate)bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(Ⅱ) and cis-di(thiocyanate)bis(2,2′-bipyridyl-3,3′-dicarboxylate) ruthenium(Ⅱ), were utilized as the s...Two kinds of Ru(Ⅱ)-bipyridine complexes, cis-di(thiocyanate)bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(Ⅱ) and cis-di(thiocyanate)bis(2,2′-bipyridyl-3,3′-dicarboxylate) ruthenium(Ⅱ), were utilized as the sensitizers to the nanocrystalline TiO-2 film electrodes. Study shows that the two dyes have quite different sensitization properties due to the strong steric effect of carboxyl groups. In addition, the pretreatment to nanocrystalline TiO-2 film electrodes with TiCl-4 was investigated, which is an effective way to improve the photoelectric conversion performances of sensitized TiO-2 electrodes.展开更多
For better performance of dye sensitized solar cells (DSSCs), a bilayer structured electrode was constructed by employing a mesoporous anatase TiO2 overlayer above a commercial P25 TiO2 nanoparticles underlayer. The...For better performance of dye sensitized solar cells (DSSCs), a bilayer structured electrode was constructed by employing a mesoporous anatase TiO2 overlayer above a commercial P25 TiO2 nanoparticles underlayer. The mesoporous anatase TiO2, prepared through a facile surfactant-assisted sol-gel process, possessed large pore size and well inter-connected network structure, both beneficial for dye adsorption and electron transfer. The dye adsorption capability of the mesoporous TiO2 was nearly twice that of the P25 counterpart. In the electrode, the mesoporous TiO2 film enhanced both dye adsorption and lightharvest, to increase photocurrent (Jsc) from 12.32 to 14.78 mA/cm^2. Compared to the single P25 TiO2 film, the synergy of the mesoporous TiO2 and the P25 TiO2 nanoparticle films in the electrode resulted in a 24% improvement in light-to-electricity conversion efficiency (η). This bilayered electrode provides an alternative approach for further developing a photovoltaic device with better cell performance.展开更多
文摘Composite nanoporous electrode SnO2/TiO2 was fabricated for the dye sensitized solar cell (DSSC) with N3 (Cis-Ru). After introducing of TiO2, the open-circuit photovoltage (Voc) was higher than that of the pure SnO2 electrode, while short-circuit photocurrent (Isc) was varied with the ratio of the TiO2. Appropriate content of the TiO2 can be beneficial to the efficiency of the solar cell, and it gives negative impact on the composite electrode when the content of TiO2 is higher.
文摘The microporous nanocry'sta1line TiO2 electrode with large surface roughness factor hasbeen prepared on a conducting glass support. Modification of the TiO2 electrode by in situ preparingquantum sized RuS2 particles on the surface of TiO2 electrode extends the optical absorptionspectrum and photocurrent action specmim into visible region. In addition, compared with RuS2 bulknlaterials- a blue shifi in both absorption spectrum and photocurrent action speCtrum of RuS2rriO2elcctrode is obserived and explained in terms of quantum sized effect.
基金Supported by the National Natural Science Foundation of China(No. 5 0 0 82 0 0 3,5 0 372 0 2 2 ) and the Natural ScienceFoundation of Fujian Province,China(No. 2 0 0 1I0 0 6,E0 2 10 0 2 3)
文摘A dye-sensitized nanocrystalline TiO 2 solar cell(DYSC) was assembled, of which counter electrode was modified already by platinum, nickel and carbon. It was found that the DYSC had better photoelectric performance when the electrode was modified by platinum than by nickel and carbon. The influence of the incidence light wavelength on the incidence monochromatic photoelectric conversion efficiency(IPCE) was investigated. The result shows that the IPCE mainly depends on the short-circuit current density(I SC) of a DYSC, and the IPCE reaches 48.32% under the irradiation with the wavelength of 560 nm when the counter electrode of a DYSC was modified by platinum. The influence of incident light intensity on the photoelectric properties of a DYSC was also investigated. It was found that the I SC and open-circuit voltage(V OC) increased and the fill factor(f f) of the DYSC decreased with the increase of the incident light intensity.
文摘The degradation of ethinylestradiol (EE, an orally bio-active estrogen) in an aqueous-methanolic solution using a Ti/TiO2 thin-film electrode and UV radiation (a photoelectrocatalytic system) was evaluated. Hence, HPLC/UV analysis shows that EE (at 0.34 mmol) is totally consumed after 30 minutes of exposure to the photoelectrocatalytic system in the presence of Na2SO4 (0.1 mol·L-1) and with an applied bias potential of +1.0 V versus the Ag/AgCl reference electrode. Moreover, monitoring by direct infusion electrospray ionization mass spectrometry (ESI-MS) and SPME-GC/ MS (solid phase microextraction coupled with gas chromatography-mass spectrometry) reveals that apparently no degradation products are formed under these conditions. Hence, this study demonstrates that the photoelectrocatalytic system can be efficiently used to promote the complete degradation (and likely mineralization) of this hormone under these conditions.
文摘Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. The morphology of TiO2 electrode is one of the most important factors in QDSSCs. Inverse opal (IO) TiO2 electrode, which has periodic mesoporous structure, is useful for QDSSCs because of better penetration of electrolyte than conventional nanoparticulate TiO2 electrode. In addition, the ordered three dimensional structure of IO-TiO2 would be better for electron transport. We have found that open circuit voltage Voc of QDSSCs with IO-TiO2 electrodes was much higher (0.2 V) than that with nanoparticulate TiO2 electrodes. But short circuit current density Jsc was lower in the case of IO-TiO2 electrodes because of the smaller surface area of IO-TiO2. In this study, for increasing surface area of IO-TiO2, we applied TiCl4 post treatment on IO-TiO2 and investigated the effect of the post treatment on photovoltaic properties of CdSe QD sensitized IO-TiO2 solar cells. It was found that Jsc could be enhanced due to TiCl4 post treatment, but decreased again for more than one cycle treatment, which indicates excess post treatment may lead to worse penetration of electrolyte. Our results indicate that the appropriate post treatment can improve the energy conversion efficiency of the QDSSCs.
基金supported by the Natural Sciences and Engineering Research Council(NSERC)of CanadaThe financial support of the State Scholarship Fund of China(No.201506160061)
文摘The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO_2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO_2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 10~4 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO_2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based Re RAM device in the future.
文摘A new type of dye-sensitized nanocrystalline solid state photovoltaic cell based on the wide band gap n-TiO2/p-CuI heterojunction was fabricated. Tetra-carboxyphenyl porphyrine (TPP-(COOH)(4)), squarylium cyanine derivative (SQ-(CH2),(SO3Py+)-Py-.) and ruthenium bipyridyl complex (RuL2(NCS)(2)) were used as photosensitizers. Larger photocurrents and photovoltages were shown in the cell sensitized by ruthenium bipyridyl complex and can be further increased by intercalation of a TiO2 thin underlayer.
文摘Two kinds of Ru(Ⅱ)-bipyridine complexes, cis-di(thiocyanate)bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(Ⅱ) and cis-di(thiocyanate)bis(2,2′-bipyridyl-3,3′-dicarboxylate) ruthenium(Ⅱ), were utilized as the sensitizers to the nanocrystalline TiO-2 film electrodes. Study shows that the two dyes have quite different sensitization properties due to the strong steric effect of carboxyl groups. In addition, the pretreatment to nanocrystalline TiO-2 film electrodes with TiCl-4 was investigated, which is an effective way to improve the photoelectric conversion performances of sensitized TiO-2 electrodes.
基金supported by the National Natural Science Foundation of China (20925621)Shanghai Rising-Star Program (09QH1400700,09QA1401500)+4 种基金Special Projects for Key Laboratories in Shanghai (09DZ2202000,10DZ2211100)Special Projects for Nanotechnology of Shanghai (0952nm02100)Shanghai Pujiang Program (09PJ1403200)Basic Research Program of Shanghai (10JC1403300)Fundamental Research Funds for the Central Universities
文摘For better performance of dye sensitized solar cells (DSSCs), a bilayer structured electrode was constructed by employing a mesoporous anatase TiO2 overlayer above a commercial P25 TiO2 nanoparticles underlayer. The mesoporous anatase TiO2, prepared through a facile surfactant-assisted sol-gel process, possessed large pore size and well inter-connected network structure, both beneficial for dye adsorption and electron transfer. The dye adsorption capability of the mesoporous TiO2 was nearly twice that of the P25 counterpart. In the electrode, the mesoporous TiO2 film enhanced both dye adsorption and lightharvest, to increase photocurrent (Jsc) from 12.32 to 14.78 mA/cm^2. Compared to the single P25 TiO2 film, the synergy of the mesoporous TiO2 and the P25 TiO2 nanoparticle films in the electrode resulted in a 24% improvement in light-to-electricity conversion efficiency (η). This bilayered electrode provides an alternative approach for further developing a photovoltaic device with better cell performance.