Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibri...Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.展开更多
A series of nitrogen-doped SrMoO_(4) with different Sr/N mole ratio (R=0,0.05,0.10,0.15,0.20,0.40,and 0.60) were synthesized using urea as the N source via the vapor-thermal method.The photocatalytic degradation abili...A series of nitrogen-doped SrMoO_(4) with different Sr/N mole ratio (R=0,0.05,0.10,0.15,0.20,0.40,and 0.60) were synthesized using urea as the N source via the vapor-thermal method.The photocatalytic degradation ability of all samples was evaluated using methylene blue (MB) as a target contaminant.The band gaps of N-doped samples are all higher than that of pristine ones,which is only 3.12 eV.BET specific surface area S_(BET) and pore volume are increased due to the N doping.And the greater increase of S_(BET),the faster the photodegradation speed of methylene blue on SrMoO_(4).More specifically,the degradation efficiency of MB is improved up to 87%in 100 min.展开更多
To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃...To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.展开更多
The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in ...The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in the multi-dimensional nitrogen-doped carbon structure(S-FeWO_(4)/NC)was successfully synthesized.The doped S atoms optimized the charge distribution in FeWO_(4)and enhanced the intrinsic activity.At the same time,S doping accelerated the formation of reaction intermediates during the adsorption reduction of O_(2)on the surface of S-FeWO_(4)/NC.Accordingly,the S-FeWO_(4)/NC catalyst showed more positive half-wave potential(0.85 V)and better stability than that of the FeWO_(4)/NC catalyst.Furthermore,the S-FeWO_(4)/NC-based zinc-air battery exhibited considerable power density of 150.3m W cm^(-2),high specific capacity of 912.7 m A h g^(-1),and prominent cycle stability up to 220 h.This work provides an assistance to the development of cheap and efficient tungsten-based oxygen reduction catalysts and the promotion of its application in the zinc-air battery.展开更多
The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of...The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process.展开更多
本文基于密度泛函理论(DFT)的第一性原理计算了W、Mn、V、Ti替位掺杂二维MoSi_(2)N_(4)后的几何结构、电子结构以及光学性质的变化.电子结构分析表明W、Mn、W、Ti替位掺杂二维MoSi_(2)N_(4)后的禁带宽度分别为1.806 e V、1.003 e V、1.2...本文基于密度泛函理论(DFT)的第一性原理计算了W、Mn、V、Ti替位掺杂二维MoSi_(2)N_(4)后的几何结构、电子结构以及光学性质的变化.电子结构分析表明W、Mn、W、Ti替位掺杂二维MoSi_(2)N_(4)后的禁带宽度分别为1.806 e V、1.003 e V、1.218 e V和1.373 e V;四种过渡金属掺杂后MoSi_(2)N_(4)的带隙类型没有发生改变,均为间接带隙半导体;W掺杂后的杂质能级靠近价带顶,费米能级靠近价带顶,为p型半导体,杂质能级为受主能级;Mn掺杂后的杂质能级靠近导带底,费米能级靠近导带底,为n型半导体;V和Ti掺杂后杂质能级位于费米能级附近,为复合中心;光学性质分析表明,在2 e V~4 e V的能量区间内,W掺杂结构的吸收波长为336 nm,体系发生红移;Mn、V和Ti替位掺杂后的吸收波长分别为320 nm、358 nm和338 nm,且掺杂体系均发生蓝移.展开更多
LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechani...LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechanism involving substantial structural rearrangements,resulting in unsatisfactory rate performance.Carbon coating,cation doping,and morphological control have been widely employed to reconcile these issues.Inspired by these,we propose a synthetic route with metal–organic frameworks(MOFs)as self-sacrificial templates to simultaneously realize shape modulation,Mn doping,and N-doped carbon coating for enhanced electrochemical performances.The as-synthesized Li MnxFe1–xPO4/C(x=0,0.25,and0.5)deliver tunable electrochemical behaviors induced by the MOF templates,among which LiMn_(0.25)Fe_(0.75)PO_(4)/C outperforms its counterparts in cyclability(164.7 mA h g^(-1)after 200 cycles at 0.5 C)and rate capability(116.3 mA h g^(-1)at 10 C).Meanwhile,the ex-situ XRD reveals a dominant single-phase solid solution mechanism of LiMn_(0.25)Fe_(0.75)PO_(4)/C during delithiation,contrary to the pristine LiFePO_(4),without major structural reconstruction,which helps to explain the superior rate performance.Furthermore,the density functional theory(DFT)calculations verify the effects of Mn doping and embody the superiority of LiMn_(0.25)Fe_(0.75)PO_(4)/C as a LIB cathode,which well supports the experimental observations.This work provides insightful guidance for the design of tunable MOF-derived mixed transitionmetal systems for advanced LIBs.展开更多
To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of...To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of carbon in every final product was about 3.5%. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy observations(SEM), charge/discharge test, carbon analysis and electrochemical impedance spectroscopy(EIS). The results indicate that the prepared samples have ordered olivine structure and doping of the low concentration Ti^(4+) does not affect the structure of the samples. The electrochemical capabilities evaluated by charge-discharge test show that the sample with 1% Ti^(4+) (molar fraction) has good electrochemical performance delivering about an initial specific capacity of 146.7 mA·h/g at 0.3C rate. Electrochemical impedance spectroscopy measurement results show that the charge transfer resistance of the sample could be decreased greatly by doping an appropriate amount Ti^(4+).展开更多
基金financially supported by the National Natural Science Foundation of China(No.51904250)the China Postdoctoral Science Foundation(No.2021M692254)+2 种基金the Sichuan Science and Technology Program(No.2022YFG0098)the Fundamental Research Funds for the Central Universities(Nos.2021CDSN-02,2022SCU12002,2022CDZG-17,2022CDSN-08,2022CDZG-9)the Hohhot Science and Technology Program(No.2023-Jie Bang Gua Shuai-Gao-3)。
文摘Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.
基金Funded by National Key Research and Development Program of China (No.2021YFA1600203)。
文摘A series of nitrogen-doped SrMoO_(4) with different Sr/N mole ratio (R=0,0.05,0.10,0.15,0.20,0.40,and 0.60) were synthesized using urea as the N source via the vapor-thermal method.The photocatalytic degradation ability of all samples was evaluated using methylene blue (MB) as a target contaminant.The band gaps of N-doped samples are all higher than that of pristine ones,which is only 3.12 eV.BET specific surface area S_(BET) and pore volume are increased due to the N doping.And the greater increase of S_(BET),the faster the photodegradation speed of methylene blue on SrMoO_(4).More specifically,the degradation efficiency of MB is improved up to 87%in 100 min.
基金financially supported by the Korea Institute of Energy Research(KIER)(grant no.C3-2401,2402,2403)the National Research Foundation(grant no.2022M3J1A1063019)funded by the Ministry of Science and ICT
文摘To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.
基金the support of the National Natural Science Foundation of China(Nos.22178148,U21A20328)the Natural Science Foundation of Jiangsu Province(No.BK20191430)+2 种基金the Six Talent Peaks Project in Jiangsu Province(No.XNY-009)the Jiangsu Province and Education Ministry CoSponsored Synergistic Innovation Center of Modern Agricultural Equipment(No.XTCX2029)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in the multi-dimensional nitrogen-doped carbon structure(S-FeWO_(4)/NC)was successfully synthesized.The doped S atoms optimized the charge distribution in FeWO_(4)and enhanced the intrinsic activity.At the same time,S doping accelerated the formation of reaction intermediates during the adsorption reduction of O_(2)on the surface of S-FeWO_(4)/NC.Accordingly,the S-FeWO_(4)/NC catalyst showed more positive half-wave potential(0.85 V)and better stability than that of the FeWO_(4)/NC catalyst.Furthermore,the S-FeWO_(4)/NC-based zinc-air battery exhibited considerable power density of 150.3m W cm^(-2),high specific capacity of 912.7 m A h g^(-1),and prominent cycle stability up to 220 h.This work provides an assistance to the development of cheap and efficient tungsten-based oxygen reduction catalysts and the promotion of its application in the zinc-air battery.
基金the National Natural Science Foundation of China (92034301,22078063 and 22022804)Major Program of Qingyuan Innovation Laboratory (00121003)the Natural Science Foundation of Fujian Province (2020H6007)。
文摘The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process.
文摘本文基于密度泛函理论(DFT)的第一性原理计算了W、Mn、V、Ti替位掺杂二维MoSi_(2)N_(4)后的几何结构、电子结构以及光学性质的变化.电子结构分析表明W、Mn、W、Ti替位掺杂二维MoSi_(2)N_(4)后的禁带宽度分别为1.806 e V、1.003 e V、1.218 e V和1.373 e V;四种过渡金属掺杂后MoSi_(2)N_(4)的带隙类型没有发生改变,均为间接带隙半导体;W掺杂后的杂质能级靠近价带顶,费米能级靠近价带顶,为p型半导体,杂质能级为受主能级;Mn掺杂后的杂质能级靠近导带底,费米能级靠近导带底,为n型半导体;V和Ti掺杂后杂质能级位于费米能级附近,为复合中心;光学性质分析表明,在2 e V~4 e V的能量区间内,W掺杂结构的吸收波长为336 nm,体系发生红移;Mn、V和Ti替位掺杂后的吸收波长分别为320 nm、358 nm和338 nm,且掺杂体系均发生蓝移.
基金the financial support from the Research and Development Plan Project in Key Fields of Guangdong Province(2020B0101030005)Applied Special Project of Guangdong Provincial Science and Technology Plan(2017B090917002)+1 种基金Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120027)Key R&D projects in Guangdong Province(2020B0101030005)。
文摘LiFePO_(4),as a prevailing cathode material for lithium-ion batteries(LIBs),still encounters issues such as intrinsic poor electronic conductivity,inferior Li-ion diffusion kinetic,and two-phase transformation mechanism involving substantial structural rearrangements,resulting in unsatisfactory rate performance.Carbon coating,cation doping,and morphological control have been widely employed to reconcile these issues.Inspired by these,we propose a synthetic route with metal–organic frameworks(MOFs)as self-sacrificial templates to simultaneously realize shape modulation,Mn doping,and N-doped carbon coating for enhanced electrochemical performances.The as-synthesized Li MnxFe1–xPO4/C(x=0,0.25,and0.5)deliver tunable electrochemical behaviors induced by the MOF templates,among which LiMn_(0.25)Fe_(0.75)PO_(4)/C outperforms its counterparts in cyclability(164.7 mA h g^(-1)after 200 cycles at 0.5 C)and rate capability(116.3 mA h g^(-1)at 10 C).Meanwhile,the ex-situ XRD reveals a dominant single-phase solid solution mechanism of LiMn_(0.25)Fe_(0.75)PO_(4)/C during delithiation,contrary to the pristine LiFePO_(4),without major structural reconstruction,which helps to explain the superior rate performance.Furthermore,the density functional theory(DFT)calculations verify the effects of Mn doping and embody the superiority of LiMn_(0.25)Fe_(0.75)PO_(4)/C as a LIB cathode,which well supports the experimental observations.This work provides insightful guidance for the design of tunable MOF-derived mixed transitionmetal systems for advanced LIBs.
基金Project(04JJ0388) supported by the National Science Foundation of Hunan Province, China
文摘To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of carbon in every final product was about 3.5%. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy observations(SEM), charge/discharge test, carbon analysis and electrochemical impedance spectroscopy(EIS). The results indicate that the prepared samples have ordered olivine structure and doping of the low concentration Ti^(4+) does not affect the structure of the samples. The electrochemical capabilities evaluated by charge-discharge test show that the sample with 1% Ti^(4+) (molar fraction) has good electrochemical performance delivering about an initial specific capacity of 146.7 mA·h/g at 0.3C rate. Electrochemical impedance spectroscopy measurement results show that the charge transfer resistance of the sample could be decreased greatly by doping an appropriate amount Ti^(4+).