The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a revers...The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a reversible transformation with the high martensite transformation temperature of 500oC and good thermal stability. The alloy displayed the elongation of 15% and a maximum recovery stain of 5.5% with 8% pre-strain.展开更多
Snperconductivities and structural properties of Ti-Zr-Ta ternary alloys are extensively investigated. The TiZrTa sample has a cubic structure (β-phase) and shows a sharp superconducting transition at a critical te...Snperconductivities and structural properties of Ti-Zr-Ta ternary alloys are extensively investigated. The TiZrTa sample has a cubic structure (β-phase) and shows a sharp superconducting transition at a critical temperature (To) of about 7.3 K. In addition, two series of Ti-Zr-Ta alloys, with nominal compositions of Ti65-xZr35Tax and TixZr65-xTa35 respectively,are prepared, and their superconductivities and crystal structures change regularly with the chemical composition. Our experimental study also indicates that the annealing processing of this kind of material can cause the transition temperature to increase and the highest Tc is observed to be about 8.3 K in annealed samples.展开更多
By a combination of the nanoindentation and electron probe microanalysis(EPMA)techniques,the traditional diffusion couple technique is extended to map the mechanical property of β-type Ti alloys over a wide compositi...By a combination of the nanoindentation and electron probe microanalysis(EPMA)techniques,the traditional diffusion couple technique is extended to map the mechanical property of β-type Ti alloys over a wide composition range,which can be utilized to develop very versatile novel bio-Ti alloys for hard tissue re placements in arti ficial bones,joints,and dental implants.To create complete single-phase composition ranges of Ti-based bcc solid solution,12 types of bcc Ti-Nb-Zr-Mo/Ti-Nb-Zr-Ta quaternary diffusion couples were fabricated and annealed at 1273 K for 25 h.In this way,the composition-mechanical property relationships in the vast composition space of Ti-based alloys were established using EPMA and nanoindentation probes.Notably,the measured composition-dependent Young’s moduli,hardness,and elastic recovery as well as the derived ratio of hardness to Young’s modulus,and the ratio of the cube of hardness to the square of Young’s modulus,in the developed compositional mechanical property database,were visualized in a five-dimensional scatter plot.This enables an effective tool to screen the Ti-Nb-Zr-based alloys fororthopedic and dental applications according to different clinical requirements,and to rationalize the fundamental mechanical relationships in the rapid development of β-Ti alloys.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51071059 and 51271065) and the National Basic Research Program of China (Grant Nt). 2012CB619400)
文摘The microstructure, martensite transformation behavior, thermal stability and shape memory behavior of Ti–20Zr– 10Ta high temperature shape memory alloy were investigated. The Ti–20Zr–10Ta alloy exhibited a reversible transformation with the high martensite transformation temperature of 500oC and good thermal stability. The alloy displayed the elongation of 15% and a maximum recovery stain of 5.5% with 8% pre-strain.
基金supported by the National Natural Science Foundation of China(Grant Nos.10874227,11074292,and 10904166)
文摘Snperconductivities and structural properties of Ti-Zr-Ta ternary alloys are extensively investigated. The TiZrTa sample has a cubic structure (β-phase) and shows a sharp superconducting transition at a critical temperature (To) of about 7.3 K. In addition, two series of Ti-Zr-Ta alloys, with nominal compositions of Ti65-xZr35Tax and TixZr65-xTa35 respectively,are prepared, and their superconductivities and crystal structures change regularly with the chemical composition. Our experimental study also indicates that the annealing processing of this kind of material can cause the transition temperature to increase and the highest Tc is observed to be about 8.3 K in annealed samples.
基金financial support from the National Natural Science Foundation for Youth of China(Grant No.51701083)the Guangdong Provincial Natural Science Foundation for Doctoral Research Project(Grant No.2017A030310519)+4 种基金the Fundamental Research Funds for the Central Universities(Grant No.21617340)the Scientific Research Funds for the Talents and the Innovation Foundation of Jinan University,Guangzhou,Chinathe open foundation of Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials,Guangxi University(Grant No.2019GXYSOF09)the Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials(Grant No.HKDNM201903)financial support from the National Key Research and Development Project(Grant No.2020YFC1107202)。
文摘By a combination of the nanoindentation and electron probe microanalysis(EPMA)techniques,the traditional diffusion couple technique is extended to map the mechanical property of β-type Ti alloys over a wide composition range,which can be utilized to develop very versatile novel bio-Ti alloys for hard tissue re placements in arti ficial bones,joints,and dental implants.To create complete single-phase composition ranges of Ti-based bcc solid solution,12 types of bcc Ti-Nb-Zr-Mo/Ti-Nb-Zr-Ta quaternary diffusion couples were fabricated and annealed at 1273 K for 25 h.In this way,the composition-mechanical property relationships in the vast composition space of Ti-based alloys were established using EPMA and nanoindentation probes.Notably,the measured composition-dependent Young’s moduli,hardness,and elastic recovery as well as the derived ratio of hardness to Young’s modulus,and the ratio of the cube of hardness to the square of Young’s modulus,in the developed compositional mechanical property database,were visualized in a five-dimensional scatter plot.This enables an effective tool to screen the Ti-Nb-Zr-based alloys fororthopedic and dental applications according to different clinical requirements,and to rationalize the fundamental mechanical relationships in the rapid development of β-Ti alloys.