期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Preparation and properties of novel Cu-based bulk metallic glasses Cu_(55-x)Zr_(37)Ti_8In_x 被引量:2
1
作者 皮锦红 潘冶 +2 位作者 吴继礼 张露 贺显聪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2989-2993,共5页
The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass ... The glassy rods were successfully fabricated in the Cu-Zr-Ti-In alloy system by casting into a copper mold. The value of ATx reaches a maximum of 66 K for the BMG CusoZraTTi8In5 alloy. The reasons for enhancing glass forming ability of Cu-based BMGs with the addition of indium were discussed from atomic size and thermodynamics. Alternatively, the BMG Cu52Zra7Ti8In3 exhibits the highest compressive strength (1981 MPa) and the best plasticity among glassy Cu55-xZra7TisInx (x_〈5). The total plastic deformation of Cu52Zr37TisIn3 before fracture approaches 1.2%. 展开更多
关键词 cu-Zr-ti-In alloy INDIUM cu-based alloy bulk metallic glass glass forming ability mechanical properties
下载PDF
Microstructural evolution during homogenization of Al-Cu-Li-Mn-Zr-Ti alloy 被引量:17
2
作者 李红英 苏雄杰 +1 位作者 尹浩 黄德胜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2543-2550,共8页
The microstructure evolution of Al-Cu-Li-Mn-Zr-Ti alloy during homogenization was investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and diff... The microstructure evolution of Al-Cu-Li-Mn-Zr-Ti alloy during homogenization was investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), and differential scanning calorimeter (DSC) methods. The results show that severe dendritic segregation exists in the experimental alloy ingot. Numerous eutectic phases can be observed in the grain boundary, and the distribution of the main elements along the interdendritic region varies periodically. The main secondary phase is Al2Cu. The overburnt temperature of the alloy is 520 °C. The second phases are gradually dissolved into the matrix, and the grain boundaries become spare and thin during homogenization with increasing temperature or prolonging holding time. Homogenization can be described by a constitutive equation in exponential function. The suitable homogenization treatment for the alloy is (510 °C, 18 h), which agrees well with the results of homogenization kinetic analysis. 展开更多
关键词 Al-cu-Li-Mn-Zr-ti alloy HOMOGENIZAtiON microstructure kinetics
下载PDF
Influence of electron-beam superposition welding on intermetallic layer of Cu/Ti joint 被引量:3
3
作者 陈国庆 张秉刚 +1 位作者 刘伟 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2416-2420,共5页
QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in c... QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in centered welding and at the Ti fusion line when the beam is deviated towards Cu. A new method referred to as electron-beam superposition welding was presented, and the optimal welding sequence was considered. The IMC-layer produced by centered welding was fragmented and remelted during Cu-side non-centered welding, giving a finely structured compound layer and improved mechanical properties of the joint. The tensile strength of joint is 276.0 MPa, 76.7% that of the base metal. 展开更多
关键词 cu alloy ti alloy electron beam superposition welding IMC-layer
下载PDF
Microstructure and properties of Cu-3Ti-1Ni alloy with aging process 被引量:5
4
作者 Jia LIU Xian-hui WANG +2 位作者 Qian-ni RAN Gang ZHAO Xiu-xiu ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3183-3188,共6页
The effects of Ni addition and aging treatment on the microstructure and properties of Cu?3Ti alloy were investigated. Themicrostructure and phase constituents were characterized by optical microscopy, scanning electr... The effects of Ni addition and aging treatment on the microstructure and properties of Cu?3Ti alloy were investigated. Themicrostructure and phase constituents were characterized by optical microscopy, scanning electron microscopy, X-ray diffractometerand high-resolution transmission electron microscopy, and the hardness and electrical conductivity were measured as well. Theresults show that NiTi phase forms with addition of Ni into as-cast Cu-3Ti alloy during solidification, and the as-cast microstructureevolves from dentrite to equiaxial structure. After aging treatment, coherent metastable β′-Cu4Ti precipitates from the Cu matrix.However, β′-Cu4Ti precipitation phase transforms into equilibrium, incoherent and lamellar Cu3Ti phase after overaging. Meanwhile,aging treatment results in appearance of annealing twins in the residual NiTi phase, and dislocation lines exist in the Cu matrix. Niaddition enhances the electrical conductivity, but decreases the hardness of Cu?3Ti alloy. In the range of experiments, the optimumaging treatment for Cu?3Ti?1Ni alloy is 300 °C for 2 h and 450 °C for 7 h. The hardness and electrical conductivity were HV 205and 18.2%IACS (international annealed copper standard), respectively. 展开更多
关键词 cu-ti alloy AGING HARDNESS electrical conductivity MICROSTRUCTURE PROPERTY
下载PDF
Microstructure and mechanical behavior of Ti−Cu alloys produced by semisolid processing
5
作者 Kaio NIITSU CAMPO Caio Chaussêde FREITAS +3 位作者 Éder Sócrates Najar LOPES Suk-Chun MOON Rian DIPPENAAR Rubens CARAM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3578-3586,共9页
The mechanical properties of Ti−Cu alloys processed via thixoforming were evaluated.Ti−Cu(25,27,and 29 wt.%Cu)ingots were produced via arc melting,homogenization at 950℃ for 24 h,and hot-forging at 900℃,followed by ... The mechanical properties of Ti−Cu alloys processed via thixoforming were evaluated.Ti−Cu(25,27,and 29 wt.%Cu)ingots were produced via arc melting,homogenization at 950℃ for 24 h,and hot-forging at 900℃,followed by thixoforming at a speed of 8 mm/s after isothermal heat treatment at 1035℃ for 300 s.The thixoformed alloys exhibited good mechanical strength,limited plasticity under tensile loading,and reasonable plasticity under compressive loading.The mechanical strength and plasticity decreased as the Cu content increased as a result of the increasing volume fraction of the peritectic Ti_(2)Cu phase(transformed liquid),which exhibited a lower strength and plasticity than theα+Ti_(2)Cu regions(transformed solid).These findings indicated that the trade-off between the mechanical properties and semisolid processability is largely governed by the Cu content. 展开更多
关键词 semisolid processing THIXOFORMING ti−cu alloys MICROSTRUCTURE mechanical properties
下载PDF
Synthesis and compressive fracture behavior of a CuZr-based bulk amorphous alloy with Ti addition
6
作者 陈鼎 董建峰 马国芝 《Journal of Central South University》 SCIE EI CAS 2013年第5期1137-1141,共5页
Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal charac... Cu46Zr46A14.8Ti3.2 bulk metallic glass (BMG) was successfully synthesized by copper-mold casting and the mechanical properties at room temperature were measured by compression tests. The structure and thermal characteristics were analyzed by XRD and DSC, and the fracture surface morphology was examined by SEM. The glassy alloy with 4 mm in diameter shows an high fracture strength of 1 960 MPa, with an improvement of about 20% compared to the ultimate compression fracture strength of the Cu46Zr46A18 BMG, which suggests that the Ti addition improves the compression fracture strength. The different degrees of the adiabatic heating induce four types of fracture features: a vein-like structure, an elongated and striated vein pattern, melting and smooth regions. The elongated and striated vein patterns as well as the melting region show that enormous strain energy is released, which causes significant adiabatic heating. Furthernaore, many micro-cracks observed in the smooth region are caused by the strong shear force. In addition, the strong shear force leads to many shear bands as well as the melting in the lateral surface. 展开更多
关键词 cu-Zr-ti-A1 bulk metallic glass compression fracture behavior fracture morphology adiabatic heating
下载PDF
Microstructural evolution of copper-titanium alloy during in-situ formation of TiB_2 particles 被引量:2
7
作者 M.SOBHANI H.ARABI +1 位作者 A.MIRHABIBI R.M.D.BRYDSON 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2994-3001,共8页
Bulk Cu-Ti alloy reinforced by TiB2 nano particles was prepared using in-situ reaction between Cu 3.4%Ti and Cu-0.7%B master alloys along with rapid solidification and subsequent heat treatment for 1-10 h at 900 ℃. H... Bulk Cu-Ti alloy reinforced by TiB2 nano particles was prepared using in-situ reaction between Cu 3.4%Ti and Cu-0.7%B master alloys along with rapid solidification and subsequent heat treatment for 1-10 h at 900 ℃. High-resolution transmission electron microscopy (HRTEM) characterization showed that primary TiB2 nano particles and TiB whiskers were formed by in-situ reaction between Ti and B in the liquid copper. The formation of TiB whiskers within the melt led to coarsening of TiB2 particles. Primary TiB2 particles were dispersed along the grain boundaries and hindered grain growth at high temperature, while the secondary TiB2 particles were formed during heat treatment of the alloy by diffusion reaction of solute titanium and boron inside the grains. Electrical conductivity and hardness of the composite were evaluated during heat treatment. The results indicated that the formation of secondary TiB2 particles in the matrix caused a delay in hardness reduction at high temperature. The electrical conductivity and hardness increased up to 8 h of heat treatment and reached 33.5% IACS and HV 158, respectively. 展开更多
关键词 in-situ reaction tiB whiskers tiB2 particles cu-ti alloy composite
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部