A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and ...A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.展开更多
The Cu-Ti-Si alloys containing in-situ formed Ti5Si3 are prepared. In order to clarify the Ti5Si3 formation processes and its microstructure characteristics, the as-cast and deeply etched Cu-Ti-Si alloys with differen...The Cu-Ti-Si alloys containing in-situ formed Ti5Si3 are prepared. In order to clarify the Ti5Si3 formation processes and its microstructure characteristics, the as-cast and deeply etched Cu-Ti-Si alloys with different compositions and cooling rates were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that the eutectic Ti5Si3 phases in Cu-Ti-Si alloys are rod-like with hexagonal cross section which tend to intertwine with each other to form a firm skeleton like a bird nest structure which can make the alloys keep their original shape even after etching off the Cu matrix. In addition, there is Cu in the center of many Ti5Si3 rods, resulting in a core-shell structure. With the increase of the cooling rate, Ti5Si3 distributes more uniformly, and the diameter of Ti5Si3 significantly decreases, with a minimum size of less than 100 nm, while the aspect ratio of Ti5Si3 increases.展开更多
基金Project(50971127)supported by the National Natural Science Foundation of China
文摘A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.
基金This work was financially supported by the Natural Science Foundation of Hebei Province of China(Grant No.E2019502057)the Fundamental Research Funds for the Central Universities,China(Grant No.2018MS120).
文摘The Cu-Ti-Si alloys containing in-situ formed Ti5Si3 are prepared. In order to clarify the Ti5Si3 formation processes and its microstructure characteristics, the as-cast and deeply etched Cu-Ti-Si alloys with different compositions and cooling rates were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It is found that the eutectic Ti5Si3 phases in Cu-Ti-Si alloys are rod-like with hexagonal cross section which tend to intertwine with each other to form a firm skeleton like a bird nest structure which can make the alloys keep their original shape even after etching off the Cu matrix. In addition, there is Cu in the center of many Ti5Si3 rods, resulting in a core-shell structure. With the increase of the cooling rate, Ti5Si3 distributes more uniformly, and the diameter of Ti5Si3 significantly decreases, with a minimum size of less than 100 nm, while the aspect ratio of Ti5Si3 increases.