The texture evaluation of α2 phase in Ti-25Al-10Nb-3V-1Mo sheet during rolling and annealing has been investigated by means of microstructure observation and ODF analysis. From the weak initial {1010} (1210) and {000...The texture evaluation of α2 phase in Ti-25Al-10Nb-3V-1Mo sheet during rolling and annealing has been investigated by means of microstructure observation and ODF analysis. From the weak initial {1010} (1210) and {0001}(1210) textures a {1210}(1010) texture and a {0001}(uvtw)fibre texture are formed after cold rolling. The {0001} (1210) texture is also strengthened simultaneously. The activation process of slip systems is discussed concerning formation of the rolling texture. Because of the disappearance of {0001} (nvtw) fibre texture the primary recrystallization process should occur and the {1210}(1010) texture forms during annealing展开更多
Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the a...Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the amorphous and crystalline filler alloys as well as the joints brazed with them were investigated in details.Results showed that the amorphous filler alloy possessed narrower melting temperature interval,lower liquidus temperature and melting active energy compared with the crystalline filler alloy,and it also exhibited better brazeability on the surface of the Ti.47Al.2Nb.2Cr.0.15B alloy.The TiAl joints brazed with crystalline and amorphous filler alloys were composed of two interfacial reaction layers and a central brazed layer.Under the same conditions,the tensile strength of the joint brazed with the amorphous filler alloy was always higher than that with the crystalline filler alloy.The maxmium tensile strength of the joint brazed at 1273 K with the amorphous filler alloy reached 254 MPa.展开更多
Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties ...Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties were evaluated by tensile tests at room and elevated temperatures. The results indicate that the lath-like and globular primary α phase, secondary α phase and β phase are obtained after forging and heat treatment processing. The size of secondary α phase is much smaller than that of primary α phase. After heat treatment, the volume fraction of primary α phase is decreased, and that of secondary α phase is increased. With the increase of solution temperature, the volume fraction of primary α phase is gradually decreased, and that of secondary α phase is obviously increased. The yield strength and tensile strength of Ti-6Al-4V-10Nb alloy are significantly enhanced with the solution temperature increasing.展开更多
The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that the...The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that the α-phase growth is controlled by solute diffusion during the heat treatment processes. Four different microstructures were established by combinations of several heat treatments, and Ti-10V-2Fe-3Al alloy shows excellent formability both above and below the β transus temperature. The alloy possesses low deformation resistance and active restoration mechanism during the deformation. A constitutive equation describing the hot deformation behavior of Ti-10V-2Fe-3Al alloy was obtained. Higher fl ow stress was observed for the acicular morphology of α phase in microstructures with large aspect ratios as compared with that of small aspect ratios. Due to the dynamic recovery in soft β phase, and the dynamic recrystallization and breakage of acicular α-phase, fl ow softening occurred signifi cantly during deformation. Dynamic recrystallization also occurred especially in the severely deformed regions of forged parts.展开更多
Superplastic properties and microstructural evolution of a Ti-24Al-14Nb-3V-0.5Mo (at. pct) intermetallic alloy were studied. Optimum superplastic properties were obtained for temperatures in the interval 960℃≤5 T≤5...Superplastic properties and microstructural evolution of a Ti-24Al-14Nb-3V-0.5Mo (at. pct) intermetallic alloy were studied. Optimum superplastic properties were obtained for temperatures in the interval 960℃≤5 T≤5980℃. The apparent activation energy in the superplastic regime was determined and the deformation mechanism was also discussed. Based on the studies, a curve panel with three sheets sandwich structure was fabricated successfully. The microstructures corresponding to different strain in the part were also studied.展开更多
High-resolution transmission electron microscope (HRTEM) was employed to investigate the deformation-induced α2→γ phase transformation phenomenon in a hot deformed Ti-45Al-10Nb alloy. Such a tronsformation can be n...High-resolution transmission electron microscope (HRTEM) was employed to investigate the deformation-induced α2→γ phase transformation phenomenon in a hot deformed Ti-45Al-10Nb alloy. Such a tronsformation can be nucleated either at α2/γ interfaces or at stacking faults on the basal planes of the α2 phase. The growth of deformation-induced γplate is accomplished by the motion of α/6<100> Shockley partials on alternate basal planes (0001)α2, and the α/6<100> Shockley partials move in coordination rather than sweep on (0001)α2 plane one by one. It appears that no atom transportation is involved in this stress-induced α2→γ transfromation.展开更多
The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced s...The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase展开更多
Effect of β-flecks on properties of tensile elongation and low cycle.fatigue life at room tern. perature for Ti-10V-2Fe-3Al alloy has been investigated.The cracks along initial β-grain boundaries in the β-fleck reg...Effect of β-flecks on properties of tensile elongation and low cycle.fatigue life at room tern. perature for Ti-10V-2Fe-3Al alloy has been investigated.The cracks along initial β-grain boundaries in the β-fleck region may propagate to form intergranular brittle fracture.Under alternating load,the β-fleck often becomes a fatigue origin.While under higher strain,the cracks initiate and propagate to fracture early at the original β-grain boundaries in β-fleck region and at α-grain boundaries.展开更多
The characteristics of fatigue crack initiation in Ti-5AI-4Sn-2Zr1Mo-O.7Nd-O.25Si alloy wereStudied. Two modes Of fatigue crack initiation were found. The Nd-rich phase particles displaybetter resistance to fatigue cr...The characteristics of fatigue crack initiation in Ti-5AI-4Sn-2Zr1Mo-O.7Nd-O.25Si alloy wereStudied. Two modes Of fatigue crack initiation were found. The Nd-rich phase particles displaybetter resistance to fatigue crack initiation than the matrix at lower stress.展开更多
Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the g...Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the grain sizes of a phase and β phase were approximately 50 and 100 nm. Conversely, the average thicknesses of a phase and β phase in as-received microstructure were measured to be 0.7 and 0.5 μm, respectively. TEM and XRD methods were used to analyze the microstructure and texture changes after severe deformation. Microstructure refinement was deduced to the complex interaction among slip dislocations in the a phase, the complex interaction among slip dislocations and martensites in the β phases. In addition, the interaction between the a phase and the β phase also contributed to the microstructure refinement.展开更多
When biomaterials are implanted in the human body,the surfaces of the implants become favorable sites for microbial adhesion and biofilm formation,causing peri-implant infection which frequently results in the failure...When biomaterials are implanted in the human body,the surfaces of the implants become favorable sites for microbial adhesion and biofilm formation,causing peri-implant infection which frequently results in the failure of prosthetics and revision surgery.Ti-Mo alloy is one of the commonly used implant materials for load-bearing bone replacement,and the prevention of infection of Ti-Mo implants is therefore crucial.In this study,bacterial inhibitory copper(Cu)was added to Ti-Mo matrix to develop a novel Ti-Mo-Cu alloy with bacterial inhibitory property.The effects of Cu content on microstructure,tensile properties,cytocompatibility,and bacterial inhibitory ability of Ti-Mo-Cu alloy were systematically investigated.Results revealed that Ti-10Mo-1Cu alloy consisted ofαandβphases,while there were a few Ti2Cu intermetallic compounds existed for Ti-10Mo-3Cu and Ti-10Mo-5Cu alloys,in addition toαandβphases.The tensile strength of Ti-10Mo-xCu alloy increased with Cu content while elongation decreased.Ti-10Mo-3Cu alloy exhibited an optimal tensile strength of 1098.1 MPa and elongation of 5.2%.Cytocompatibility study indicated that none of the Ti-10Mo-xCu alloys had a negative effect on MC3T3-E1 cell proliferation.Bacterial inhibitory rates against S.aureus and E.coli increased with the increase in Cu content of Ti-10Mo-xCu alloy,within the ranges of 20-60%and 15-50%,respectively.Taken together,this study suggests that Ti-10Mo-3Cu alloy with high strength,acceptable elongation,excellent cytocompatibility,and the bacterial inhibitory property is a promising candidate for biomedical implant applications.展开更多
Severe plastic deformation of Ti-10V-2Fe-3Al alloy in the surface region was caused by shot peening at air pressure of 0.6 MPa with processing time ranging from 1 to 45 min.The results showed that the thickness of sur...Severe plastic deformation of Ti-10V-2Fe-3Al alloy in the surface region was caused by shot peening at air pressure of 0.6 MPa with processing time ranging from 1 to 45 min.The results showed that the thickness of surface deformation layer was proportio nal to the processing time,the microhardness of the shot-peened surface in creased from 280 to 385 HV,and the depth of highly hardening layers arrived at 200μm.It was worth noting that a grain size gradient from nanocrystalline on the surface toward coarse grain in the matrix was obtained during the shot peening process and the minimum grain size in the top surface after shot peening was about 100-200 nm.展开更多
Biomedical porous Ti-15 Mo alloys were prepared by microwave sintering using ammonium hydrogen carbonate(NH4HCO3) as the space holder agent to adjust the porosity and mechanical properties. The porous Ti-15 Mo alloy...Biomedical porous Ti-15 Mo alloys were prepared by microwave sintering using ammonium hydrogen carbonate(NH4HCO3) as the space holder agent to adjust the porosity and mechanical properties. The porous Ti-15 Mo alloys are dominated by β-Ti phase with a little α-Ti phase, and the proportion of α and β phase has no significant difference as the NH4HCO3 content increases. The porosities and the average pore sizes of the porous Ti-15 Mo alloys increase with increase of the contents of NH4HCO3, while all of the compressive strength, elastic modulus and bending strength decrease. However, the compressive strength, bending strength and the elastic modulus are higher or close to those of natural bone. The surface of the porous Ti-15 Mo alloy was further modified by hydrothermal treatment, after which Na2Ti6O13 layers with needle and flake-like clusters were formed on the outer and inner surface of the porous Ti-15 Mo alloy. The hydrothermally treated porous Ti-15 Mo alloy is completely covered by the Ca-deficient apatite layers after immersed in SBF solution for 14 d, indicating that it possesses high apatiteforming ability and bioactivity. These results demonstrate that the hydrothermally treated microwave sintered porous Ti-15 Mo alloys could be a promising candidate as the bone implant.展开更多
As implant substitutes are increasingly applied to the clinic,the infection caused by implants has become one of the most common complications,and the modification of the antibacterial function of the implant can redu...As implant substitutes are increasingly applied to the clinic,the infection caused by implants has become one of the most common complications,and the modification of the antibacterial function of the implant can reduce such complications.In this work,a well-defined bowl-shaped nanostructure coating with photocatalytic and photothermal synergistic antibacterial properties was prepared on Ti-19Zr-10Nb-1Fe(TZNF)alloy.The coating is obtained by spin-coating and sintering TiO_(2)precursors templated from self-assembled microspheres of polystyrenepoly(4-vinylpyridine)(PS-P4VP)amphiphilic block polymer on TZNF alloy.PS-P4VP provides the bowl-shaped TiO_(2)nanostructures doped with C,N elements,reducing the band-gap of TiO_(2),which can absorb near-infrared(NIR)light to release reactive oxygen species and produce photothermal conversion.The bowl structure is expected to enhance the utilization of light via the reflection in the confined space.The bowl-shaped surface has 100%antibacterial rates after 30 min of NIR light irradiation.In addition to antibacterial properties,the bowl-shaped surface has better hydrophilicity and protein adsorption capacity.The amount of protein adsorbed on TZNF with the bowl-shaped structures was six times that of TZNF.Hence,the bowl-shaped nanostructure can promote the proliferation and adhesion of osteoblasts,the cell proliferation rate was increased by 10–30%.展开更多
In fatigue critical applications, Ti-10V-2Fe-3Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10V-2Fe-3Al alloy in very high cycle...In fatigue critical applications, Ti-10V-2Fe-3Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10V-2Fe-3Al alloy in very high cycle fatigue (VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initi- ation mechanism, from internal crack initiation to surface crack initiation and from αp cleavage to αS/β decohesion, occur when the stress ratio (R) and stress level are reduced. Fatigue limits exist at Nr = 6×10^7 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of αp facets and αS/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from -0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
文摘The texture evaluation of α2 phase in Ti-25Al-10Nb-3V-1Mo sheet during rolling and annealing has been investigated by means of microstructure observation and ODF analysis. From the weak initial {1010} (1210) and {0001}(1210) textures a {1210}(1010) texture and a {0001}(uvtw)fibre texture are formed after cold rolling. The {0001} (1210) texture is also strengthened simultaneously. The activation process of slip systems is discussed concerning formation of the rolling texture. Because of the disappearance of {0001} (nvtw) fibre texture the primary recrystallization process should occur and the {1210}(1010) texture forms during annealing
基金Foundation item:Project(51865012)supported by the National Natural Science Foundation of ChinaProject(2016005)supported by the Open Foundation of National Engineering Research Center of Near-net-shape Forming for Metallic Materials,China+2 种基金Project(GJJ170372)supported by the Science Foundation of Educational Department of Jiangxi Province,ChinaProject(JCKY2016603C003)supported by the GF Basic Research Project,ChinaProject(JPPT125GH038)supported by the Research Project of Special Furnishment and Part,China
文摘Ti-47Al-2Nb-2Cr-0.15B(mole fraction,%)alloy was vacuum brazed with amorphous and crystalline Ti.25Zr-12.5Cu-12.5Ni-3.0Co-2.0Mo(mass fraction,%)filler alloys,and the melting,spreading and gap filling behaviors of the amorphous and crystalline filler alloys as well as the joints brazed with them were investigated in details.Results showed that the amorphous filler alloy possessed narrower melting temperature interval,lower liquidus temperature and melting active energy compared with the crystalline filler alloy,and it also exhibited better brazeability on the surface of the Ti.47Al.2Nb.2Cr.0.15B alloy.The TiAl joints brazed with crystalline and amorphous filler alloys were composed of two interfacial reaction layers and a central brazed layer.Under the same conditions,the tensile strength of the joint brazed with the amorphous filler alloy was always higher than that with the crystalline filler alloy.The maxmium tensile strength of the joint brazed at 1273 K with the amorphous filler alloy reached 254 MPa.
基金Projects(2015GB107003,2015GB119001)supported by the International Thermonuclear Experimental Reactor(ITER)Program,ChinaProjects(51474155,11672200,51674175)supported by the National Natural Science Foundation of China
文摘Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties were evaluated by tensile tests at room and elevated temperatures. The results indicate that the lath-like and globular primary α phase, secondary α phase and β phase are obtained after forging and heat treatment processing. The size of secondary α phase is much smaller than that of primary α phase. After heat treatment, the volume fraction of primary α phase is decreased, and that of secondary α phase is increased. With the increase of solution temperature, the volume fraction of primary α phase is gradually decreased, and that of secondary α phase is obviously increased. The yield strength and tensile strength of Ti-6Al-4V-10Nb alloy are significantly enhanced with the solution temperature increasing.
基金Funded by the National Natural Science Foundation of China(Nos.51222405 and 51474063)
文摘The microstructure evolution and formability of Ti-10V-2Fe-3Al alloy related to the initial microstructures and processing variables were investigated during hot forming process. The experimental results show that the α-phase growth is controlled by solute diffusion during the heat treatment processes. Four different microstructures were established by combinations of several heat treatments, and Ti-10V-2Fe-3Al alloy shows excellent formability both above and below the β transus temperature. The alloy possesses low deformation resistance and active restoration mechanism during the deformation. A constitutive equation describing the hot deformation behavior of Ti-10V-2Fe-3Al alloy was obtained. Higher fl ow stress was observed for the acicular morphology of α phase in microstructures with large aspect ratios as compared with that of small aspect ratios. Due to the dynamic recovery in soft β phase, and the dynamic recrystallization and breakage of acicular α-phase, fl ow softening occurred signifi cantly during deformation. Dynamic recrystallization also occurred especially in the severely deformed regions of forged parts.
文摘Superplastic properties and microstructural evolution of a Ti-24Al-14Nb-3V-0.5Mo (at. pct) intermetallic alloy were studied. Optimum superplastic properties were obtained for temperatures in the interval 960℃≤5 T≤5980℃. The apparent activation energy in the superplastic regime was determined and the deformation mechanism was also discussed. Based on the studies, a curve panel with three sheets sandwich structure was fabricated successfully. The microstructures corresponding to different strain in the part were also studied.
文摘High-resolution transmission electron microscope (HRTEM) was employed to investigate the deformation-induced α2→γ phase transformation phenomenon in a hot deformed Ti-45Al-10Nb alloy. Such a tronsformation can be nucleated either at α2/γ interfaces or at stacking faults on the basal planes of the α2 phase. The growth of deformation-induced γplate is accomplished by the motion of α/6<100> Shockley partials on alternate basal planes (0001)α2, and the α/6<100> Shockley partials move in coordination rather than sweep on (0001)α2 plane one by one. It appears that no atom transportation is involved in this stress-induced α2→γ transfromation.
文摘The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase
文摘Effect of β-flecks on properties of tensile elongation and low cycle.fatigue life at room tern. perature for Ti-10V-2Fe-3Al alloy has been investigated.The cracks along initial β-grain boundaries in the β-fleck region may propagate to form intergranular brittle fracture.Under alternating load,the β-fleck often becomes a fatigue origin.While under higher strain,the cracks initiate and propagate to fracture early at the original β-grain boundaries in β-fleck region and at α-grain boundaries.
文摘The characteristics of fatigue crack initiation in Ti-5AI-4Sn-2Zr1Mo-O.7Nd-O.25Si alloy wereStudied. Two modes Of fatigue crack initiation were found. The Nd-rich phase particles displaybetter resistance to fatigue crack initiation than the matrix at lower stress.
文摘Microstructure refinement of a dual phase titanium alloy, Ti-3AI-4.5V-5Mo, by severe room temperature compression was investigated. Nanocrystalline grains were observed in the sample with 75% reduction, in which the grain sizes of a phase and β phase were approximately 50 and 100 nm. Conversely, the average thicknesses of a phase and β phase in as-received microstructure were measured to be 0.7 and 0.5 μm, respectively. TEM and XRD methods were used to analyze the microstructure and texture changes after severe deformation. Microstructure refinement was deduced to the complex interaction among slip dislocations in the a phase, the complex interaction among slip dislocations and martensites in the β phases. In addition, the interaction between the a phase and the β phase also contributed to the microstructure refinement.
基金supported by the National Natural Science Foundation of China(51922004,51874037,51672184)State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing(2019-Z14)+4 种基金Fundamental Research Funds for the Central Universities(FRF-TP-19005C1Z)the support from the European Commission via the H2020 MSCA RISE BAMOS programme(734156)Bo Su would like to thank financial support from the MRC(MR/S010343/1)the EU H2020 MSCA RISE Bio-TUNE programmethe support from the China Scholarship Council(CSC)for a CSC Ph.D.scholarship(201906460106).
文摘When biomaterials are implanted in the human body,the surfaces of the implants become favorable sites for microbial adhesion and biofilm formation,causing peri-implant infection which frequently results in the failure of prosthetics and revision surgery.Ti-Mo alloy is one of the commonly used implant materials for load-bearing bone replacement,and the prevention of infection of Ti-Mo implants is therefore crucial.In this study,bacterial inhibitory copper(Cu)was added to Ti-Mo matrix to develop a novel Ti-Mo-Cu alloy with bacterial inhibitory property.The effects of Cu content on microstructure,tensile properties,cytocompatibility,and bacterial inhibitory ability of Ti-Mo-Cu alloy were systematically investigated.Results revealed that Ti-10Mo-1Cu alloy consisted ofαandβphases,while there were a few Ti2Cu intermetallic compounds existed for Ti-10Mo-3Cu and Ti-10Mo-5Cu alloys,in addition toαandβphases.The tensile strength of Ti-10Mo-xCu alloy increased with Cu content while elongation decreased.Ti-10Mo-3Cu alloy exhibited an optimal tensile strength of 1098.1 MPa and elongation of 5.2%.Cytocompatibility study indicated that none of the Ti-10Mo-xCu alloys had a negative effect on MC3T3-E1 cell proliferation.Bacterial inhibitory rates against S.aureus and E.coli increased with the increase in Cu content of Ti-10Mo-xCu alloy,within the ranges of 20-60%and 15-50%,respectively.Taken together,this study suggests that Ti-10Mo-3Cu alloy with high strength,acceptable elongation,excellent cytocompatibility,and the bacterial inhibitory property is a promising candidate for biomedical implant applications.
基金the National Natural Science Foundation of China(Grant No.51361026)the Natural Science Foundation of Jiangxi Province(Grant No.20171BAB206006)+1 种基金the Key Project of Science and Technology Project of Jiangxi Provincial Education Department(Grant No.GJJ160678)Open Foundation of National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University(GF201501004).
文摘Severe plastic deformation of Ti-10V-2Fe-3Al alloy in the surface region was caused by shot peening at air pressure of 0.6 MPa with processing time ranging from 1 to 45 min.The results showed that the thickness of surface deformation layer was proportio nal to the processing time,the microhardness of the shot-peened surface in creased from 280 to 385 HV,and the depth of highly hardening layers arrived at 200μm.It was worth noting that a grain size gradient from nanocrystalline on the surface toward coarse grain in the matrix was obtained during the shot peening process and the minimum grain size in the top surface after shot peening was about 100-200 nm.
基金supported by the National Natural Science Foundation of China (51101085)the Aeronautical Science Foundation of China (2015ZF56027)+2 种基金the Natural Science Foundation of Jiangxi Province (2016BAB206109)the Science and Technology Support Plan Project of Jiangxi Province (20151BBG70039)the Science and Technology Project of Jiangxi Province Education Department (GJJ150721)
文摘Biomedical porous Ti-15 Mo alloys were prepared by microwave sintering using ammonium hydrogen carbonate(NH4HCO3) as the space holder agent to adjust the porosity and mechanical properties. The porous Ti-15 Mo alloys are dominated by β-Ti phase with a little α-Ti phase, and the proportion of α and β phase has no significant difference as the NH4HCO3 content increases. The porosities and the average pore sizes of the porous Ti-15 Mo alloys increase with increase of the contents of NH4HCO3, while all of the compressive strength, elastic modulus and bending strength decrease. However, the compressive strength, bending strength and the elastic modulus are higher or close to those of natural bone. The surface of the porous Ti-15 Mo alloy was further modified by hydrothermal treatment, after which Na2Ti6O13 layers with needle and flake-like clusters were formed on the outer and inner surface of the porous Ti-15 Mo alloy. The hydrothermally treated porous Ti-15 Mo alloy is completely covered by the Ca-deficient apatite layers after immersed in SBF solution for 14 d, indicating that it possesses high apatiteforming ability and bioactivity. These results demonstrate that the hydrothermally treated microwave sintered porous Ti-15 Mo alloys could be a promising candidate as the bone implant.
基金supported by the National Key Research and Development Program of China(No.2018YFC1106600)the National Natural Science Foundation of China(No.52173193).
文摘As implant substitutes are increasingly applied to the clinic,the infection caused by implants has become one of the most common complications,and the modification of the antibacterial function of the implant can reduce such complications.In this work,a well-defined bowl-shaped nanostructure coating with photocatalytic and photothermal synergistic antibacterial properties was prepared on Ti-19Zr-10Nb-1Fe(TZNF)alloy.The coating is obtained by spin-coating and sintering TiO_(2)precursors templated from self-assembled microspheres of polystyrenepoly(4-vinylpyridine)(PS-P4VP)amphiphilic block polymer on TZNF alloy.PS-P4VP provides the bowl-shaped TiO_(2)nanostructures doped with C,N elements,reducing the band-gap of TiO_(2),which can absorb near-infrared(NIR)light to release reactive oxygen species and produce photothermal conversion.The bowl structure is expected to enhance the utilization of light via the reflection in the confined space.The bowl-shaped surface has 100%antibacterial rates after 30 min of NIR light irradiation.In addition to antibacterial properties,the bowl-shaped surface has better hydrophilicity and protein adsorption capacity.The amount of protein adsorbed on TZNF with the bowl-shaped structures was six times that of TZNF.Hence,the bowl-shaped nanostructure can promote the proliferation and adhesion of osteoblasts,the cell proliferation rate was increased by 10–30%.
文摘In fatigue critical applications, Ti-10V-2Fe-3Al alloy components are expected to endure cyclic loading with cycles above 109. To assess their operating safety, S-N relations of Ti-10V-2Fe-3Al alloy in very high cycle fatigue (VHCF) regime are of concern and have been investigated in this work. Fatigue behavior including S-N curves and crack initiation mechanisms is reported. Two transitions of fatigue crack initi- ation mechanism, from internal crack initiation to surface crack initiation and from αp cleavage to αS/β decohesion, occur when the stress ratio (R) and stress level are reduced. Fatigue limits exist at Nr = 6×10^7 cycles for all stress ratios except for 0.5. In the VHCF regime two kinds of internal crack initiation mechanisms exist, i.e., coalescence of cluster of αp facets and αS/β decohesion. Their mutual competition depends on the stress ratio and can be interpreted in terms of different stress character required for promotion on different internal crack initiation mechanism. Small crack propagation is discussed to be life controlling process under the stress ratio range from -0.5 to 0.1 during VHCF regime while under the stress ratio 0.5 VHCF, life almost refers to the life required for crack initiation.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.