The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of defor...The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language.展开更多
Hot deformation behaviors and microstructure evolution of Ti-3Al-5Mo-4Cr-2Zr-1Fe(Ti-35421)alloy in theβsingle field are investigated by isothermal compression tests on a Gleeble-3500 simulator at temperatures of 820-...Hot deformation behaviors and microstructure evolution of Ti-3Al-5Mo-4Cr-2Zr-1Fe(Ti-35421)alloy in theβsingle field are investigated by isothermal compression tests on a Gleeble-3500 simulator at temperatures of 820-900°C and strain rates of 0.001-1 s^(-1).The research results show that discontinuous yield phenomenon and rheological softening are affected by the strain rates and deformation temperatures.The critical conditions for dynamic recrystallization and kinetic model of Ti-35421 alloy are determined,and the Arrhenius constitutive model is constructed.The rheological behaviors of Ti-35421 alloys aboveβphase transformation temperature are predicted by the constitutive model accurately.The EBSD analysis proves that the deformation softening is controlled by dynamic recovery and dynamic recrystallization.In addition,continuous dynamic recrystallization is determined during hot deformation,and the calculation model for recrystallization grain sizes is established.Good linear dependency between the experimental and simulated values of recrystallized grain sizes indicates that the present model can be used for the prediction of recrystallized grain size with high accuracy.展开更多
The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compr...The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compression tests were carried out with Instron 8874 test machine, while dynamic compression tests were performed with the split Hopkinson pressure bar (SHPB) which was installed with heating device and synchro- assembly system. The dynamic mechanical behaviors tests of TC17 were carded out from room temperature to 800 ℃ at intervals of 200 ℃ and at high sWain rates (5 500-1 9200 s-l). The stress-strain curves considering temperature-sWain rate coupling actions were obtained. The Johnson-Cook constitutive model was developed through data fitting of the stress-sWain curves. The material constants in the developed constitutive model can be determined using isothermal and adiabatic stress-strain curves at different strain rates. The Johnson-Cook constitutive model provided satisfied prediction of the plastic flow stress for TC17 alloy.展开更多
As implant substitutes are increasingly applied to the clinic,the infection caused by implants has become one of the most common complications,and the modification of the antibacterial function of the implant can redu...As implant substitutes are increasingly applied to the clinic,the infection caused by implants has become one of the most common complications,and the modification of the antibacterial function of the implant can reduce such complications.In this work,a well-defined bowl-shaped nanostructure coating with photocatalytic and photothermal synergistic antibacterial properties was prepared on Ti-19Zr-10Nb-1Fe(TZNF)alloy.The coating is obtained by spin-coating and sintering TiO_(2)precursors templated from self-assembled microspheres of polystyrenepoly(4-vinylpyridine)(PS-P4VP)amphiphilic block polymer on TZNF alloy.PS-P4VP provides the bowl-shaped TiO_(2)nanostructures doped with C,N elements,reducing the band-gap of TiO_(2),which can absorb near-infrared(NIR)light to release reactive oxygen species and produce photothermal conversion.The bowl structure is expected to enhance the utilization of light via the reflection in the confined space.The bowl-shaped surface has 100%antibacterial rates after 30 min of NIR light irradiation.In addition to antibacterial properties,the bowl-shaped surface has better hydrophilicity and protein adsorption capacity.The amount of protein adsorbed on TZNF with the bowl-shaped structures was six times that of TZNF.Hence,the bowl-shaped nanostructure can promote the proliferation and adhesion of osteoblasts,the cell proliferation rate was increased by 10–30%.展开更多
基金Project (2007CB613807) supported by the National Basic Research Program of ChinaProject (35-TP-2009) supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject (51075333) supported by the National Natural Science Foundation of China
文摘The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language.
基金the financial supports from the National Natural Science Foundation of China (Nos. 52001163, 52075237)the Primary Research and Development Plan of Jiangsu Province, China (No. BE2019119)
文摘Hot deformation behaviors and microstructure evolution of Ti-3Al-5Mo-4Cr-2Zr-1Fe(Ti-35421)alloy in theβsingle field are investigated by isothermal compression tests on a Gleeble-3500 simulator at temperatures of 820-900°C and strain rates of 0.001-1 s^(-1).The research results show that discontinuous yield phenomenon and rheological softening are affected by the strain rates and deformation temperatures.The critical conditions for dynamic recrystallization and kinetic model of Ti-35421 alloy are determined,and the Arrhenius constitutive model is constructed.The rheological behaviors of Ti-35421 alloys aboveβphase transformation temperature are predicted by the constitutive model accurately.The EBSD analysis proves that the deformation softening is controlled by dynamic recovery and dynamic recrystallization.In addition,continuous dynamic recrystallization is determined during hot deformation,and the calculation model for recrystallization grain sizes is established.Good linear dependency between the experimental and simulated values of recrystallized grain sizes indicates that the present model can be used for the prediction of recrystallized grain size with high accuracy.
基金Funded by the National Basic Research Program of China(No.2009CB724401)the Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment(No.2012ZX04003-041)
文摘The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compression tests were carried out with Instron 8874 test machine, while dynamic compression tests were performed with the split Hopkinson pressure bar (SHPB) which was installed with heating device and synchro- assembly system. The dynamic mechanical behaviors tests of TC17 were carded out from room temperature to 800 ℃ at intervals of 200 ℃ and at high sWain rates (5 500-1 9200 s-l). The stress-strain curves considering temperature-sWain rate coupling actions were obtained. The Johnson-Cook constitutive model was developed through data fitting of the stress-sWain curves. The material constants in the developed constitutive model can be determined using isothermal and adiabatic stress-strain curves at different strain rates. The Johnson-Cook constitutive model provided satisfied prediction of the plastic flow stress for TC17 alloy.
基金supported by the National Key Research and Development Program of China(No.2018YFC1106600)the National Natural Science Foundation of China(No.52173193).
文摘As implant substitutes are increasingly applied to the clinic,the infection caused by implants has become one of the most common complications,and the modification of the antibacterial function of the implant can reduce such complications.In this work,a well-defined bowl-shaped nanostructure coating with photocatalytic and photothermal synergistic antibacterial properties was prepared on Ti-19Zr-10Nb-1Fe(TZNF)alloy.The coating is obtained by spin-coating and sintering TiO_(2)precursors templated from self-assembled microspheres of polystyrenepoly(4-vinylpyridine)(PS-P4VP)amphiphilic block polymer on TZNF alloy.PS-P4VP provides the bowl-shaped TiO_(2)nanostructures doped with C,N elements,reducing the band-gap of TiO_(2),which can absorb near-infrared(NIR)light to release reactive oxygen species and produce photothermal conversion.The bowl structure is expected to enhance the utilization of light via the reflection in the confined space.The bowl-shaped surface has 100%antibacterial rates after 30 min of NIR light irradiation.In addition to antibacterial properties,the bowl-shaped surface has better hydrophilicity and protein adsorption capacity.The amount of protein adsorbed on TZNF with the bowl-shaped structures was six times that of TZNF.Hence,the bowl-shaped nanostructure can promote the proliferation and adhesion of osteoblasts,the cell proliferation rate was increased by 10–30%.