Porous Ti-23%Nb(mole fraction)shape memory alloys(SMAs)were prepared successfully by microwave sintering with excellent outer finishing(without space holder).The effects of microwave-sintering on the microstructure,ph...Porous Ti-23%Nb(mole fraction)shape memory alloys(SMAs)were prepared successfully by microwave sintering with excellent outer finishing(without space holder).The effects of microwave-sintering on the microstructure,phase composition,phase-transformation temperature,mechanical properties and shape-memory effect were investigated.The results show that the density and size of porosity vary based on the sintering time and temperature,in which the smallest size and the most uniform pore shape are exhibited with Ti-23%Nb SMA after being sintered at 900°C for 30 min.The microstructure of porous Ti-Nb SMA consists of predominantα',α,andβphases in needle-like and plate-like morphologies,and their volume fractions vary based on the sintering time and temperature.Theβphase represents the largest phase due to the higher content ofβstabilizer element with little intensities ofαandα'phases.The highest ultimate strength and its strain are indicated for the sample sintered at 900°C for 30 min,while the best superelasticity is for the sample sintered at 1200°C for 30 min.The low-elastic modulus enables these alloys to avoid the problem of“stress shielding”.Therefore,microwave heating can be employed to sinter Ti-alloys for biomedical applications and improve the mechanical properties of these alloys.展开更多
基金the financial support under the University Research Grant No. Q.J130000.3024. 00M57
文摘Porous Ti-23%Nb(mole fraction)shape memory alloys(SMAs)were prepared successfully by microwave sintering with excellent outer finishing(without space holder).The effects of microwave-sintering on the microstructure,phase composition,phase-transformation temperature,mechanical properties and shape-memory effect were investigated.The results show that the density and size of porosity vary based on the sintering time and temperature,in which the smallest size and the most uniform pore shape are exhibited with Ti-23%Nb SMA after being sintered at 900°C for 30 min.The microstructure of porous Ti-Nb SMA consists of predominantα',α,andβphases in needle-like and plate-like morphologies,and their volume fractions vary based on the sintering time and temperature.Theβphase represents the largest phase due to the higher content ofβstabilizer element with little intensities ofαandα'phases.The highest ultimate strength and its strain are indicated for the sample sintered at 900°C for 30 min,while the best superelasticity is for the sample sintered at 1200°C for 30 min.The low-elastic modulus enables these alloys to avoid the problem of“stress shielding”.Therefore,microwave heating can be employed to sinter Ti-alloys for biomedical applications and improve the mechanical properties of these alloys.