The hot deformation behavior of Ti-22Al-25Nb alloy fabricated by hot compressed sintering was investigated under various conditions of compression tests in the deformation temperature range of 975-1075 °C with 20...The hot deformation behavior of Ti-22Al-25Nb alloy fabricated by hot compressed sintering was investigated under various conditions of compression tests in the deformation temperature range of 975-1075 °C with 20 °C intervals and the strain rate range of 0.001-1.0 s^-1. Based on the experimental data, a novel constitutive relation combining a series of models was developed, including Zener-Hollomon parameter (Z), DRX critical model and kinetics model. The results show that the hot-deformed activation energy Q is calculated to be 410.172 kJ/mol, the ratio of critical strain (εc) to peak strain (εp) is a constant value of about 0.67. The predicted stress obtained by the established constitutive equations matches well with the true stress from experimental data. Despite large errors occur at the stage where strain rate is 0.1 s^-1 and the values of true strain are less than 0.1, the stage of large strain should be more concerned during plastic forming. Furthermore, the predicting accuracy with the DRX kinetics model was testified by an electron back-scattered diffraction (EBSD) technique.展开更多
The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint det...The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint deteriorate seriously after high temperature circulation.The effect of post-welded heat treatment on the microstructure and mechanical properties of the joint was investigated.The heat treatment was taken at 980 ℃ for 1.5 h,then furnace cooling and air cooling were performed separately.The results indicate that proper post-welded heat treatment improves the ductility of the joint at high temperature.展开更多
The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functiona...The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.展开更多
A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films ...A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.展开更多
The texture evaluation of α2 phase in Ti-25Al-10Nb-3V-1Mo sheet during rolling and annealing has been investigated by means of microstructure observation and ODF analysis. From the weak initial {1010} (1210) and {000...The texture evaluation of α2 phase in Ti-25Al-10Nb-3V-1Mo sheet during rolling and annealing has been investigated by means of microstructure observation and ODF analysis. From the weak initial {1010} (1210) and {0001}(1210) textures a {1210}(1010) texture and a {0001}(uvtw)fibre texture are formed after cold rolling. The {0001} (1210) texture is also strengthened simultaneously. The activation process of slip systems is discussed concerning formation of the rolling texture. Because of the disappearance of {0001} (nvtw) fibre texture the primary recrystallization process should occur and the {1210}(1010) texture forms during annealing展开更多
基金Project(51405110) supported by the National Natural Science Foundation of ChinaProject(2014M551234) supported by the China Postdoctoral Science Foundation+2 种基金Project(20132302120002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(HIT.NSRIF.2014006) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(LBH-Z14096) supported by the Heilongjiang Province Postdoctoral Fund,China
文摘The hot deformation behavior of Ti-22Al-25Nb alloy fabricated by hot compressed sintering was investigated under various conditions of compression tests in the deformation temperature range of 975-1075 °C with 20 °C intervals and the strain rate range of 0.001-1.0 s^-1. Based on the experimental data, a novel constitutive relation combining a series of models was developed, including Zener-Hollomon parameter (Z), DRX critical model and kinetics model. The results show that the hot-deformed activation energy Q is calculated to be 410.172 kJ/mol, the ratio of critical strain (εc) to peak strain (εp) is a constant value of about 0.67. The predicted stress obtained by the established constitutive equations matches well with the true stress from experimental data. Despite large errors occur at the stage where strain rate is 0.1 s^-1 and the values of true strain are less than 0.1, the stage of large strain should be more concerned during plastic forming. Furthermore, the predicting accuracy with the DRX kinetics model was testified by an electron back-scattered diffraction (EBSD) technique.
文摘The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint deteriorate seriously after high temperature circulation.The effect of post-welded heat treatment on the microstructure and mechanical properties of the joint was investigated.The heat treatment was taken at 980 ℃ for 1.5 h,then furnace cooling and air cooling were performed separately.The results indicate that proper post-welded heat treatment improves the ductility of the joint at high temperature.
基金Project (31100693/C100302) supported by the National Natural Science Foundation of ChinaProject (31011120049) supported by the Australia-China Special Fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of China+1 种基金Project(2010ZDKG-96) supported by the Major Subject of "13115" Programs of Shaan’xi Province, ChinaProject (2012CB619102) supported by the National Basic Research Program of China
文摘The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.
基金Project (2005CB623904) supported by the National Basic Research Program of ChinaProject (30770586) supported by the National Natural Science Foundation of China+1 种基金Project (31011120049) supported by the Australia-China special fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of ChinaProject (2010ZDKG-96) supported by the major Subject of "13115" Programs of Shaan’xi Province, China
文摘A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.
文摘The texture evaluation of α2 phase in Ti-25Al-10Nb-3V-1Mo sheet during rolling and annealing has been investigated by means of microstructure observation and ODF analysis. From the weak initial {1010} (1210) and {0001}(1210) textures a {1210}(1010) texture and a {0001}(uvtw)fibre texture are formed after cold rolling. The {0001} (1210) texture is also strengthened simultaneously. The activation process of slip systems is discussed concerning formation of the rolling texture. Because of the disappearance of {0001} (nvtw) fibre texture the primary recrystallization process should occur and the {1210}(1010) texture forms during annealing