The microstructural evolution and precipitation location of the secondary phase of an as-cast Ti-25 V-15 Cr-0.3 Si titanium alloy were investigated via isothermal compression experiments and heat treatment. The averag...The microstructural evolution and precipitation location of the secondary phase of an as-cast Ti-25 V-15 Cr-0.3 Si titanium alloy were investigated via isothermal compression experiments and heat treatment. The average aspect(length-to-width) ratio, average area and size of the grains at different heat treatment temperatures and holding time were analyzed and the effects of deformation and annealing time on the grain area and size were considered. It was found that the grain size was strongly influenced by the height reduction and holding time. Grain growth was significant when annealing time increased from 10 min to 2 h at 950 °C and height reduction of 30%; however, grain growth was minimal at annealing time between 2 and 4 h. Many dispersion particles were observed to form in continuous chains; the precipitation location was confirmed to be along initial grain boundaries, and the dispersion particles were identified to be Ti5 Si3 phase by TEM.展开更多
The effect of heat treatment and thermal exposure on the microstructure and mechanical properties of non burning β titanium alloy Ti 25V 15Cr 2Al 0.2C (mass fraction, %) was investigated. It is found that the amount ...The effect of heat treatment and thermal exposure on the microstructure and mechanical properties of non burning β titanium alloy Ti 25V 15Cr 2Al 0.2C (mass fraction, %) was investigated. It is found that the amount of α precipitation in samples after solution treatment followed by air cooling increases with increasing solution temperature. After solution treatment, the alloy was subjected to two different heat treatments to stabilize the material. The results show that the single ageing treatment(700 ℃, 4 h, AC) leads to a large amount of α precipitation, while the triplex treatment(850 ℃, 2 h, FC+700 ℃, 6 h, FC+540 ℃, 6 h, AC) significantly suppresses the formation of α precipitates. It is more important that after long term exposure at 540 ℃(the expected application temperature) samples heat treated by the triplex treatment have markedly higher ductility than those given the single aging treatment. The intermetallic compound TiCr 2 is observed in samples after long term exposure, which further degrades the ductility of the alloy.展开更多
基金Projects(51501122,51604181) supported by the National Natural Science Foundation of ChinaProject(20172009) supported by the Postdoctoral Sustentation Fund of Taiyuan University of Science and Technology,China+3 种基金Project(20132016) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(201501004-8) supported by the Jincheng Science and Technology Plan Project,ChinaProject(U1510131) supported by NSFC-Shanxi Coal-based Low-carbon United Fund and"Shanxi Young Scholars"Program,ChinaProject(201603D121010) supported by Key R&D Program of Shanxi Province,China
文摘The microstructural evolution and precipitation location of the secondary phase of an as-cast Ti-25 V-15 Cr-0.3 Si titanium alloy were investigated via isothermal compression experiments and heat treatment. The average aspect(length-to-width) ratio, average area and size of the grains at different heat treatment temperatures and holding time were analyzed and the effects of deformation and annealing time on the grain area and size were considered. It was found that the grain size was strongly influenced by the height reduction and holding time. Grain growth was significant when annealing time increased from 10 min to 2 h at 950 °C and height reduction of 30%; however, grain growth was minimal at annealing time between 2 and 4 h. Many dispersion particles were observed to form in continuous chains; the precipitation location was confirmed to be along initial grain boundaries, and the dispersion particles were identified to be Ti5 Si3 phase by TEM.
文摘The effect of heat treatment and thermal exposure on the microstructure and mechanical properties of non burning β titanium alloy Ti 25V 15Cr 2Al 0.2C (mass fraction, %) was investigated. It is found that the amount of α precipitation in samples after solution treatment followed by air cooling increases with increasing solution temperature. After solution treatment, the alloy was subjected to two different heat treatments to stabilize the material. The results show that the single ageing treatment(700 ℃, 4 h, AC) leads to a large amount of α precipitation, while the triplex treatment(850 ℃, 2 h, FC+700 ℃, 6 h, FC+540 ℃, 6 h, AC) significantly suppresses the formation of α precipitates. It is more important that after long term exposure at 540 ℃(the expected application temperature) samples heat treated by the triplex treatment have markedly higher ductility than those given the single aging treatment. The intermetallic compound TiCr 2 is observed in samples after long term exposure, which further degrades the ductility of the alloy.