The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functiona...The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.展开更多
A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films ...A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.展开更多
The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of defor...The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language.展开更多
Thermal spray assisted transient liquid phase(TLP) bonding of Ti-6 Al-4 V to Al2024 alloys was investigated, where the interlayer was 80 μ m Babbitt thermal spray coat on Al substrate. Thermal spray creates a rough a...Thermal spray assisted transient liquid phase(TLP) bonding of Ti-6 Al-4 V to Al2024 alloys was investigated, where the interlayer was 80 μ m Babbitt thermal spray coat on Al substrate. Thermal spray creates a rough and clean surface which leads to establishing a joint with higher strength. The optimized parameters were bonding temperature of 580 ℃ and bonding time of 30 and 60 min. Microstructural observation together with XRD patterns confirmed the existence of Al2 Cu, Al2 Cu Mg, Cu3 Ti, Ti Al3, Ti Al and Mg2 Sn intermetallic compounds formed in Al weld side. On the other hand, Ti3 Al, Sn3 Ti5 and Ti3 Sn intermetallic compounds formed in Ti side. With increasing bonding time from 30 to 60 min, although the interlayer was not completely consumed, the thickness of remained Babbitt interlayer decreased to approximately 15 μ m. The study showed that shear strength of the joint reaches the high value of 57 MPa obtained at larger bonding time of 60 min.展开更多
The microstructure, microhardness and tensile properties of laser additive manufactured (LAM) Ti?5Al?2Sn?2Zr?4Mo?4Cr alloy were investigated. The result shows that the microstructure evolution is strongly affected by ...The microstructure, microhardness and tensile properties of laser additive manufactured (LAM) Ti?5Al?2Sn?2Zr?4Mo?4Cr alloy were investigated. The result shows that the microstructure evolution is strongly affected by the thermal history of LAM process. Primary α (αp) with different morphologies, secondary α (αs) and martensite α' can be observed at different positions of the LAMed specimen. Annealing treatment can promote the precipitation of rib-like α phase or acicular α phase. As a result, it can increase or decrease the microhardness. The as-deposited L-direction and T-direction specimens contain the same phase constituent with different morphologies. The tensile properties of the as-deposited LAMed specimens are characterized of anisotropy. The L-direction specimen shows the character of low strength but high ductility when compared with the T-direction specimen. After annealing treatment, the strength of L-direction specimen increases significantly while the ductility reduces. The strength of the annealed T-direction specimen changes little, however, the ductility reduces nearly by 50%.展开更多
The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on mic...The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.展开更多
The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy were achieved by a series of isothermal compression tests with height reduction of 60% under the deformation temperatures of 1073-1323 K and the strain rates of...The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy were achieved by a series of isothermal compression tests with height reduction of 60% under the deformation temperatures of 1073-1323 K and the strain rates of 0.01-10s 1.The critical conditions for the onset of DRX were attained when the value of d /d,where strain hardening rate d /d,reached the minimum which corresponds to an inflection of θ versus σ curve.Thus,two important potential parameters,critical strain and critical stress,were identified,and expressed as εc/εp=0.37-0.60,σc/σp=0.81-0.91.Furthermore,by the regression analysis for conventional hyperbolic sine equation,the main material parameters such as α,β,n,and DRX activation energy,Q,were calculated.In addition,the evolution of Q with strain rate and temperature was revealed as a 3D response surface.展开更多
The main factors limiting the mass production of TiAI-based components are the high reactivity of TiAl- based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y203 cer...The main factors limiting the mass production of TiAI-based components are the high reactivity of TiAl- based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y203 ceramic crucibles and water-cooled copper crucible) were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAI alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.展开更多
Titanium oxide coatings were synthesized on Ti-2Al-2.5Zr alloy substrates by micro-arc oxidation (MAO) technique. The surface features of the coatings were studied by scanning electron microscopy. The micro-arc disc...Titanium oxide coatings were synthesized on Ti-2Al-2.5Zr alloy substrates by micro-arc oxidation (MAO) technique. The surface features of the coatings were studied by scanning electron microscopy. The micro-arc discharge channels of the Ti-2Al-2.5Zr alloy decrease while the discharge channel size increases clearly with an increase in treating time. With an increase of the coating thickness the porous layer thickness increases apparently. Phase composition of the surface layers of the coatings was evaluated by X-ray diffraction and X-ray photoelectron spectroscopy. The results of XRD and XPS analysis show that the MAO coating mainly consists of anatase and rutile TiO2.展开更多
The initiation sites and influencing factors of cavity nucleation were investigated for a Ti-6Al-2Zr-1Mo-1V alloy with lamellar starting structure,using the isothermal hot compression test.All samples were deformed to...The initiation sites and influencing factors of cavity nucleation were investigated for a Ti-6Al-2Zr-1Mo-1V alloy with lamellar starting structure,using the isothermal hot compression test.All samples were deformed to a true strain of 0.70 in the temperature range of 750-950°C and strain rate range of 0.001-10 s-1.The corresponding microstructures were observed by means of the metallurgical microscopy and scanning electron microscopy(SEM).It was found that all cavities occurred at the bulge regions of the compression specimens.Most of cavities nucleated along prior beta boundaries oriented 45°to the compression axis,while others nucleated at the interfaces of lamellar alpha colonies.Cavity nucleation was inhibited with increasing the volume fraction of beta phase and the volume fraction spheroidized of lamellar alpha phase.展开更多
Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron...Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron microscopy (FE-SEM), and were chemically analysed by using energy dispersive spectroscopy (EDS). Corrosion behaviour was investigated in a 3.5% sodium chloride solution, using electrochemical impedance spectroscopy (EIS). The morphology of the anodic oxide films was dependent on the sealing processes. The surface sealed in calcium acetate solution presented a more homogeneous and smooth structure compared with that sealed in boiling deionised water. The corrosion resistance of the oxide films sealed in calcium acetate solution was better than that sealed in boiling deionised water.展开更多
NIN has developed a new type of Ti alloy. It is suitable for structure pieces applied in hightemperature and high-pressure water/steam conditions. Its nominal composition is Ti-4Al-2V. In this paper, its microstructu...NIN has developed a new type of Ti alloy. It is suitable for structure pieces applied in hightemperature and high-pressure water/steam conditions. Its nominal composition is Ti-4Al-2V. In this paper, its microstructure, mechanical properties and corrosion resistance were studied in detail.展开更多
基金Project (31100693/C100302) supported by the National Natural Science Foundation of ChinaProject (31011120049) supported by the Australia-China Special Fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of China+1 种基金Project(2010ZDKG-96) supported by the Major Subject of "13115" Programs of Shaan’xi Province, ChinaProject (2012CB619102) supported by the National Basic Research Program of China
文摘The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.
基金Project (2005CB623904) supported by the National Basic Research Program of ChinaProject (30770586) supported by the National Natural Science Foundation of China+1 种基金Project (31011120049) supported by the Australia-China special fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of ChinaProject (2010ZDKG-96) supported by the major Subject of "13115" Programs of Shaan’xi Province, China
文摘A layer of porous film containing Ca and P was prepared by the micro-arc oxidation method on the surface of a novel near β biomedical Ti-3Zr-2Sn-3Mo-25Nb alloy, and then NH2- active group was introduced to the films by activation treatment. The phase composition, surface micro-topography and elemental characteristics of the micro-arc oxidation films were investigated with XRD, SEM, EDS and XPS, and the osteoinduction of the micro-arc oxidation films was tested using the simulated body fluid immersion, the in-vitro osteoblast cultivation test and animal experiment. The results show that the oxide layer is a kind of porous ceramic intermixture and contains Ca and P. The films in the simulated body fluid can induce apatite formation, resulting in excellent bioactivity. The cell test discovers that osteoblasts can grow well on the surface of micro-arc oxidation films. And the Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy coated with active porous calcium-phosphate films shows better osteoinduction in vivo.
基金Project (2007CB613807) supported by the National Basic Research Program of ChinaProject (35-TP-2009) supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject (51075333) supported by the National Natural Science Foundation of China
文摘The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language.
文摘Thermal spray assisted transient liquid phase(TLP) bonding of Ti-6 Al-4 V to Al2024 alloys was investigated, where the interlayer was 80 μ m Babbitt thermal spray coat on Al substrate. Thermal spray creates a rough and clean surface which leads to establishing a joint with higher strength. The optimized parameters were bonding temperature of 580 ℃ and bonding time of 30 and 60 min. Microstructural observation together with XRD patterns confirmed the existence of Al2 Cu, Al2 Cu Mg, Cu3 Ti, Ti Al3, Ti Al and Mg2 Sn intermetallic compounds formed in Al weld side. On the other hand, Ti3 Al, Sn3 Ti5 and Ti3 Sn intermetallic compounds formed in Ti side. With increasing bonding time from 30 to 60 min, although the interlayer was not completely consumed, the thickness of remained Babbitt interlayer decreased to approximately 15 μ m. The study showed that shear strength of the joint reaches the high value of 57 MPa obtained at larger bonding time of 60 min.
基金Projects(51105311,51475380)supported by the National Natural Science Foundation of ChinaProject(2013AA031103)supported by the National High-Tech Research and Development Program of China
文摘The microstructure, microhardness and tensile properties of laser additive manufactured (LAM) Ti?5Al?2Sn?2Zr?4Mo?4Cr alloy were investigated. The result shows that the microstructure evolution is strongly affected by the thermal history of LAM process. Primary α (αp) with different morphologies, secondary α (αs) and martensite α' can be observed at different positions of the LAMed specimen. Annealing treatment can promote the precipitation of rib-like α phase or acicular α phase. As a result, it can increase or decrease the microhardness. The as-deposited L-direction and T-direction specimens contain the same phase constituent with different morphologies. The tensile properties of the as-deposited LAMed specimens are characterized of anisotropy. The L-direction specimen shows the character of low strength but high ductility when compared with the T-direction specimen. After annealing treatment, the strength of L-direction specimen increases significantly while the ductility reduces. The strength of the annealed T-direction specimen changes little, however, the ductility reduces nearly by 50%.
基金Project(20133069014)supported by the National Aerospace Science Foundation of China
文摘The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.
基金Project(2012ZX04010081)supported by the National Key Technologies R&D Program of ChinaProject(cstc2009aa3012-1)supported by the Science and Technology Committee of Chongqing,ChinaProject(CDJZR12130045)supported by the Fundamental Research Funds for the Central Universities,China
文摘The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy were achieved by a series of isothermal compression tests with height reduction of 60% under the deformation temperatures of 1073-1323 K and the strain rates of 0.01-10s 1.The critical conditions for the onset of DRX were attained when the value of d /d,where strain hardening rate d /d,reached the minimum which corresponds to an inflection of θ versus σ curve.Thus,two important potential parameters,critical strain and critical stress,were identified,and expressed as εc/εp=0.37-0.60,σc/σp=0.81-0.91.Furthermore,by the regression analysis for conventional hyperbolic sine equation,the main material parameters such as α,β,n,and DRX activation energy,Q,were calculated.In addition,the evolution of Q with strain rate and temperature was revealed as a 3D response surface.
文摘The main factors limiting the mass production of TiAI-based components are the high reactivity of TiAl- based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y203 ceramic crucibles and water-cooled copper crucible) were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAI alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.
基金the National Key Laboratory for Nuclear Fuel and Materials,Nuclear Power Institute of China the Program for New Century Excellent Talents in Chinese University.
文摘Titanium oxide coatings were synthesized on Ti-2Al-2.5Zr alloy substrates by micro-arc oxidation (MAO) technique. The surface features of the coatings were studied by scanning electron microscopy. The micro-arc discharge channels of the Ti-2Al-2.5Zr alloy decrease while the discharge channel size increases clearly with an increase in treating time. With an increase of the coating thickness the porous layer thickness increases apparently. Phase composition of the surface layers of the coatings was evaluated by X-ray diffraction and X-ray photoelectron spectroscopy. The results of XRD and XPS analysis show that the MAO coating mainly consists of anatase and rutile TiO2.
基金Project(2009ZE56014)supported by the Aeronautical Science Foundation of ChinaProject(gf200901008)supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,China
文摘The initiation sites and influencing factors of cavity nucleation were investigated for a Ti-6Al-2Zr-1Mo-1V alloy with lamellar starting structure,using the isothermal hot compression test.All samples were deformed to a true strain of 0.70 in the temperature range of 750-950°C and strain rate range of 0.001-10 s-1.The corresponding microstructures were observed by means of the metallurgical microscopy and scanning electron microscopy(SEM).It was found that all cavities occurred at the bulge regions of the compression specimens.Most of cavities nucleated along prior beta boundaries oriented 45°to the compression axis,while others nucleated at the interfaces of lamellar alpha colonies.Cavity nucleation was inhibited with increasing the volume fraction of beta phase and the volume fraction spheroidized of lamellar alpha phase.
基金Supported by the National Natural Science Foundation of China(No.51271012)
文摘Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron microscopy (FE-SEM), and were chemically analysed by using energy dispersive spectroscopy (EDS). Corrosion behaviour was investigated in a 3.5% sodium chloride solution, using electrochemical impedance spectroscopy (EIS). The morphology of the anodic oxide films was dependent on the sealing processes. The surface sealed in calcium acetate solution presented a more homogeneous and smooth structure compared with that sealed in boiling deionised water. The corrosion resistance of the oxide films sealed in calcium acetate solution was better than that sealed in boiling deionised water.
文摘NIN has developed a new type of Ti alloy. It is suitable for structure pieces applied in hightemperature and high-pressure water/steam conditions. Its nominal composition is Ti-4Al-2V. In this paper, its microstructure, mechanical properties and corrosion resistance were studied in detail.