The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on mic...The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.展开更多
基金Project(20133069014)supported by the National Aerospace Science Foundation of China
文摘The Ti-35Nb-2Zr-0.3O(mass fraction,%)alloy was melted under a high-purity argon atmosphere in a high vacuumnon-consumable arc melting furnace,followed by cold deformation.The effects of cold deformation process on microstructure andmechanical properties were investigated using the OM,XRD,TEM,Vicker hardness tester and universal material testing machine.Results indicated that the alloy showed multiple plastic deformation mechanisms,including stress-inducedα'martensite(SIMα')transformation,dislocation slipping and deformation twins.With the increase of cold deformation reduction,the tensile strength andhardness increased owing to the increase of dislocation density and grain refinement,and the elastic modulus slightly increasedowing to the increase of SIMα'phase.The90%cold deformed alloy exhibited a great potential to become a new candidate forbiomedical applications since it possessed low elastic modulus(56.2GPa),high tensile strength(1260MPa)and highstrength-to-modulus ratio(22.4×10-3),which are superior than those of Ti-6Al-4V alloy.