TiAl alloy with high Nb content,nominally Ti-45Al-10Nb,was prepared by powder metallurgy,and the oxidation resistance at 850,900,and 950℃was investigated.The high-temperature oxidation-resistance mechanism and oxidat...TiAl alloy with high Nb content,nominally Ti-45Al-10Nb,was prepared by powder metallurgy,and the oxidation resistance at 850,900,and 950℃was investigated.The high-temperature oxidation-resistance mechanism and oxidation dynamics were discussed following the oxide skin morphology and microstructural evolution analysis.The oxide skin structures were similar for 850 and 900℃,with TiO_(2)+Al_(2)O_(3)mixture covering TiO_(2)with dispersed Nb_(2)O_(5).At 950℃,the oxide skin was divided into four sublayers,from the outside to the parent metal:loose TiO_(2)+Al_(2)O_(3),dense Al_(2)O_(3),dense TiO_(2)+Nb_(2)O_(5),and TiO_(2)matrix with dispersed Nb_(2)O_(5).The Nb layer suppressed the outward diffusion of Ti atoms,hindering the growth of TiO_(2),and simultaneously promote the formation of a continuous Al_(2)O_(3)protective layer,providing the alloy with long-term high-temperature oxidation resistance.展开更多
The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced s...The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase展开更多
High-resolution transmission electron microscope (HRTEM) was employed to investigate the deformation-induced α2→γ phase transformation phenomenon in a hot deformed Ti-45Al-10Nb alloy. Such a tronsformation can be n...High-resolution transmission electron microscope (HRTEM) was employed to investigate the deformation-induced α2→γ phase transformation phenomenon in a hot deformed Ti-45Al-10Nb alloy. Such a tronsformation can be nucleated either at α2/γ interfaces or at stacking faults on the basal planes of the α2 phase. The growth of deformation-induced γplate is accomplished by the motion of α/6<100> Shockley partials on alternate basal planes (0001)α2, and the α/6<100> Shockley partials move in coordination rather than sweep on (0001)α2 plane one by one. It appears that no atom transportation is involved in this stress-induced α2→γ transfromation.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51704088)the Natural Science Foundation of Heilongjiang Province of China (No. YQ2020E030)the Young Innovative Talents Training Plan of Heilongjiang Province, China (No. UNPYSCT-2017084)
文摘TiAl alloy with high Nb content,nominally Ti-45Al-10Nb,was prepared by powder metallurgy,and the oxidation resistance at 850,900,and 950℃was investigated.The high-temperature oxidation-resistance mechanism and oxidation dynamics were discussed following the oxide skin morphology and microstructural evolution analysis.The oxide skin structures were similar for 850 and 900℃,with TiO_(2)+Al_(2)O_(3)mixture covering TiO_(2)with dispersed Nb_(2)O_(5).At 950℃,the oxide skin was divided into four sublayers,from the outside to the parent metal:loose TiO_(2)+Al_(2)O_(3),dense Al_(2)O_(3),dense TiO_(2)+Nb_(2)O_(5),and TiO_(2)matrix with dispersed Nb_(2)O_(5).The Nb layer suppressed the outward diffusion of Ti atoms,hindering the growth of TiO_(2),and simultaneously promote the formation of a continuous Al_(2)O_(3)protective layer,providing the alloy with long-term high-temperature oxidation resistance.
文摘The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase
文摘High-resolution transmission electron microscope (HRTEM) was employed to investigate the deformation-induced α2→γ phase transformation phenomenon in a hot deformed Ti-45Al-10Nb alloy. Such a tronsformation can be nucleated either at α2/γ interfaces or at stacking faults on the basal planes of the α2 phase. The growth of deformation-induced γplate is accomplished by the motion of α/6<100> Shockley partials on alternate basal planes (0001)α2, and the α/6<100> Shockley partials move in coordination rather than sweep on (0001)α2 plane one by one. It appears that no atom transportation is involved in this stress-induced α2→γ transfromation.