分别在800℃、825℃、850℃焊接温度、30 m in保温时间,3 MPa焊接压力下,进行Ti-6A l-4V钛合金板与304L不锈钢网的真空扩散焊接。对接头组织结构与化学元素扩散进行了扫描电镜与能谱分析,并测试了接头的剪切强度。结果表明:不添加中间...分别在800℃、825℃、850℃焊接温度、30 m in保温时间,3 MPa焊接压力下,进行Ti-6A l-4V钛合金板与304L不锈钢网的真空扩散焊接。对接头组织结构与化学元素扩散进行了扫描电镜与能谱分析,并测试了接头的剪切强度。结果表明:不添加中间过渡层金属,可以成功地实现钛合金板与不锈钢网的扩散焊接,并使接头的剪切强度达到90 MPa以上。不锈钢网中的Fe、N、iCr扩散并固溶到钛合金中,稳定了β相,使钛合金在一定深度上,其组织由原来的α+β双相结构转变为单相的β相。不锈钢中的Cr,由于钛合金中Ti的扩散进入,而在界面发生了上坡扩散现象。这种Cr在不锈钢一定深度内的富集,形成窄长的富Cr区域,冷却后转变为硬脆的σ相。但在焊接接头中没有发现明显其它的金属间化合物或氧化物相的生成,使得接头的机械性能得到了很好的保证。展开更多
Vacuum arc melting technique was used to prepare Ti-6Al-4V alloy containing Sc (0.3% and 0.5%, mass fraction). The ingots were melted twice by vacuum self-consumable electrode arc furnace. Forging of ingots was starte...Vacuum arc melting technique was used to prepare Ti-6Al-4V alloy containing Sc (0.3% and 0.5%, mass fraction). The ingots were melted twice by vacuum self-consumable electrode arc furnace. Forging of ingots was started in β-phase region and finished in high (α+β)-phase region. Annealing after forging was performed in low (α+β)-phase region for 30 min. Isothermal high temperature compression tests were conducted using thermal simulation machine under Ar atmosphere at 850 ℃ and 1 000 ℃, and the strain rate were 0.001, 0.01, 0.1 and 1.0 s-1. Optical microscope(OM), scanning electron microscopy(SEM), energy dispersive spectrum(EDS) and transmission electron microscope(TEM) were used to study the microstructure evolution during high temperature deformation. The results show that, the peak stress value of alloys increases with increasing Sc content after deformation at 850 ℃, however, there is no obvious strengthening of Sc when the alloys are deformed at 1000 ℃. Sc exists as Sc2O3 forms by internal oxidation during forging procedure, only minor Sc solutes in matrix. At 850 ℃, the interaction between dislocation and participated particles and twinning mechanism controls the deformation procedure accompanied recrystallization. At 1000 ℃, the deformation of alloys containing Sc is mainly controlled by twinning, while the deformation of alloy without Sc is not only controlled by twinning, but also the interaction between dislocation and precipitated particles inside the twinning lamellar.展开更多
Ti-6AI-4V, among the Ti alloys, is the most widely used. In the present work, the behavior of Ti-6AI-4V alloy has been investigated by the uniaxial hot isothermal compression tests and a series of dilatometric experim...Ti-6AI-4V, among the Ti alloys, is the most widely used. In the present work, the behavior of Ti-6AI-4V alloy has been investigated by the uniaxial hot isothermal compression tests and a series of dilatometric experiments were also carried out to determine the transformation temperatures at different cooling rates. Specimens for hot compression tests were homogenized at 1050℃ for 10 min and then quickly cooled to different straining temperatures from 1050 to 850℃. Cooling rates were chosen fast enough to prevent high temperature transformation during cooling. Compression tests were conducted at temperatures from 1050 to 850℃ in steps of 50℃ at constant true strain rates of 10-3 or 10-2 s-1. The apparent activation energy for compression in two-phase region was calculated 420 kJ·mol-1. Partial globularization of a phase was observed in the specimen deformed at low strain rates and at temperatures near the transformation zone and annealed after deformation.展开更多
Ti-6A1-4V (TC4) alloys were plasma carbonized at different temperatures (900, 950, and 1 000 ℃) for duration of 3 h. Graphite rod was employed as carbon supplier to avoid the hydrogen brittleness which is ubiquit...Ti-6A1-4V (TC4) alloys were plasma carbonized at different temperatures (900, 950, and 1 000 ℃) for duration of 3 h. Graphite rod was employed as carbon supplier to avoid the hydrogen brittleness which is ubiquitous in traditional gas carbonizing process. Two distinguished structures including a thin compound layer (carbides layer) and a thick layer with the mixed microstructure of TiC and the a-Ti in carburing layer were formed during carburizing. Furthermore, it was found that the microstructure and the properties of TC4 alloy were significantly related to the carbonizing temperature. The specimen plasma carbonized at 950 ~2 obtained maximum value both in the hardness and wear resistance.展开更多
Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is invest...Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is investigated. The effects of the microstructure on the SPF/DB process were discussed. The microstructure at the interfaces and the distribution of thickness were researched.展开更多
In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component sha...In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component shape and the contact friction on the final thickness distribution were investigated in this work by using finite element method on a series of axisymmetric models. It was concluded that shape optimization and friction elimination are required to get uniform thickness distribution, and eventually to improve the mechanical quality of the formed components. The constitutive equation of the Ti-6A1-4V superplastic material was also determined on the basis of experimental data.展开更多
Ti-6A1-4V has a wide range of applications, especially in the aerospace field;however, it is a difficultto- cut material. In order to achieve sustainable machining of Ti?6A1-4V, multiple objectives considering not onl...Ti-6A1-4V has a wide range of applications, especially in the aerospace field;however, it is a difficultto- cut material. In order to achieve sustainable machining of Ti?6A1-4V, multiple objectives considering not only economic and technical requirements but also the environmental requirement need to be optimized simultaneously. In this work, the optimization design of process parameters such as type of inserts, feed rate, and depth of cut for Ti-6A1-4V turning under dry condition was investigated experimentally. The major performance indexes chosen to evaluate this sustainable process were radial thrust, cutting power, and coefficient of friction at the toolchip interface. Considering the nonlinearity between the various objectives, grey relational analysis (GRA) was first performed to transform these indexes into the corresponding grey relational coefficients, and then kernel principal component analysis (KPCA) was applied to extract the kernel principal components and determine the corresponding weights which showed their relative importance. Eventually, kernel grey relational grade (KGRG) was proposed as the optimization criterion to identify the optimal combination of process parameters. The results of the range analysis show that the depth of cut has the most significant effect, followed by the feed rate and type of inserts. Confirmation tests clearly show that the modified method combining GRA with KPCA outperforms the traditional GRA method with equal weights and the hybrid method based on GRA and PCA.展开更多
Modifications were made on the traditional split Hopkinson pressure bar (SHPB) system to conduct dynamic shear tests. The shear response of Ti-6A1-4V was acquired at a shear strain rate of 104 s-1 by using this modi...Modifications were made on the traditional split Hopkinson pressure bar (SHPB) system to conduct dynamic shear tests. The shear response of Ti-6A1-4V was acquired at a shear strain rate of 104 s-1 by using this modified apparatus. The geometry as well as the clamping mode of the double-notch specimen was optimized by commercial FEM software ABAQUS, and the feasibility of the experiment set-up was validated. A shear stress calibration coeff^cient of γT = 1.03 and a shear strain calibration coefficient of γT- = 0.50 were obtained.We have employed high- speed photography to record the deformation process, especially the initiation and propagation of adiabatic shear band (ASB), during the dynamic shear test. The frames show that the time duration from ASB initiation to its completion is less than 2 μs, from which we can estimate that the propagation speed of ASB within Ti-6A1-4V is more than 1250 m/s under such loading conditions. The temperature rise within ASB is also estimated to be △T2 ≈ 1460 ℃ based on energy balance. Such high temperature has led to softening of the material within the ASBs, and has intensified the shear localization and finally resulted in fracture of the material.展开更多
文摘Vacuum arc melting technique was used to prepare Ti-6Al-4V alloy containing Sc (0.3% and 0.5%, mass fraction). The ingots were melted twice by vacuum self-consumable electrode arc furnace. Forging of ingots was started in β-phase region and finished in high (α+β)-phase region. Annealing after forging was performed in low (α+β)-phase region for 30 min. Isothermal high temperature compression tests were conducted using thermal simulation machine under Ar atmosphere at 850 ℃ and 1 000 ℃, and the strain rate were 0.001, 0.01, 0.1 and 1.0 s-1. Optical microscope(OM), scanning electron microscopy(SEM), energy dispersive spectrum(EDS) and transmission electron microscope(TEM) were used to study the microstructure evolution during high temperature deformation. The results show that, the peak stress value of alloys increases with increasing Sc content after deformation at 850 ℃, however, there is no obvious strengthening of Sc when the alloys are deformed at 1000 ℃. Sc exists as Sc2O3 forms by internal oxidation during forging procedure, only minor Sc solutes in matrix. At 850 ℃, the interaction between dislocation and participated particles and twinning mechanism controls the deformation procedure accompanied recrystallization. At 1000 ℃, the deformation of alloys containing Sc is mainly controlled by twinning, while the deformation of alloy without Sc is not only controlled by twinning, but also the interaction between dislocation and precipitated particles inside the twinning lamellar.
文摘Ti-6AI-4V, among the Ti alloys, is the most widely used. In the present work, the behavior of Ti-6AI-4V alloy has been investigated by the uniaxial hot isothermal compression tests and a series of dilatometric experiments were also carried out to determine the transformation temperatures at different cooling rates. Specimens for hot compression tests were homogenized at 1050℃ for 10 min and then quickly cooled to different straining temperatures from 1050 to 850℃. Cooling rates were chosen fast enough to prevent high temperature transformation during cooling. Compression tests were conducted at temperatures from 1050 to 850℃ in steps of 50℃ at constant true strain rates of 10-3 or 10-2 s-1. The apparent activation energy for compression in two-phase region was calculated 420 kJ·mol-1. Partial globularization of a phase was observed in the specimen deformed at low strain rates and at temperatures near the transformation zone and annealed after deformation.
基金Funded in part by National Natural Science Foundation of China(No.51301023)the Fundamental Research Funds for the Central Universities,Chang'an University(No.CHD2011JC126,2013G1311054 and 310831151079)
文摘Ti-6A1-4V (TC4) alloys were plasma carbonized at different temperatures (900, 950, and 1 000 ℃) for duration of 3 h. Graphite rod was employed as carbon supplier to avoid the hydrogen brittleness which is ubiquitous in traditional gas carbonizing process. Two distinguished structures including a thin compound layer (carbides layer) and a thick layer with the mixed microstructure of TiC and the a-Ti in carburing layer were formed during carburizing. Furthermore, it was found that the microstructure and the properties of TC4 alloy were significantly related to the carbonizing temperature. The specimen plasma carbonized at 950 ~2 obtained maximum value both in the hardness and wear resistance.
文摘Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is investigated. The effects of the microstructure on the SPF/DB process were discussed. The microstructure at the interfaces and the distribution of thickness were researched.
基金Project supported by the National Natural Science Foundation of China (No. 50477030), and the Scientific Research Foundation for ROCS, State Education Ministry, China
文摘In the superplastic sheet forming process, the uniformity of the sheet's final thickness distribution is vital for ensuring the good mechanical quality of the formed components. The influences of the component shape and the contact friction on the final thickness distribution were investigated in this work by using finite element method on a series of axisymmetric models. It was concluded that shape optimization and friction elimination are required to get uniform thickness distribution, and eventually to improve the mechanical quality of the formed components. The constitutive equation of the Ti-6A1-4V superplastic material was also determined on the basis of experimental data.
文摘Ti-6A1-4V has a wide range of applications, especially in the aerospace field;however, it is a difficultto- cut material. In order to achieve sustainable machining of Ti?6A1-4V, multiple objectives considering not only economic and technical requirements but also the environmental requirement need to be optimized simultaneously. In this work, the optimization design of process parameters such as type of inserts, feed rate, and depth of cut for Ti-6A1-4V turning under dry condition was investigated experimentally. The major performance indexes chosen to evaluate this sustainable process were radial thrust, cutting power, and coefficient of friction at the toolchip interface. Considering the nonlinearity between the various objectives, grey relational analysis (GRA) was first performed to transform these indexes into the corresponding grey relational coefficients, and then kernel principal component analysis (KPCA) was applied to extract the kernel principal components and determine the corresponding weights which showed their relative importance. Eventually, kernel grey relational grade (KGRG) was proposed as the optimization criterion to identify the optimal combination of process parameters. The results of the range analysis show that the depth of cut has the most significant effect, followed by the feed rate and type of inserts. Confirmation tests clearly show that the modified method combining GRA with KPCA outperforms the traditional GRA method with equal weights and the hybrid method based on GRA and PCA.
基金Project supported by National Natural Science Foundation of China (Nos. 11102166 and 10932008)the 111 project(No. B07050)the Basic Research Foundation of NPU (No. JC201201)
文摘Modifications were made on the traditional split Hopkinson pressure bar (SHPB) system to conduct dynamic shear tests. The shear response of Ti-6A1-4V was acquired at a shear strain rate of 104 s-1 by using this modified apparatus. The geometry as well as the clamping mode of the double-notch specimen was optimized by commercial FEM software ABAQUS, and the feasibility of the experiment set-up was validated. A shear stress calibration coeff^cient of γT = 1.03 and a shear strain calibration coefficient of γT- = 0.50 were obtained.We have employed high- speed photography to record the deformation process, especially the initiation and propagation of adiabatic shear band (ASB), during the dynamic shear test. The frames show that the time duration from ASB initiation to its completion is less than 2 μs, from which we can estimate that the propagation speed of ASB within Ti-6A1-4V is more than 1250 m/s under such loading conditions. The temperature rise within ASB is also estimated to be △T2 ≈ 1460 ℃ based on energy balance. Such high temperature has led to softening of the material within the ASBs, and has intensified the shear localization and finally resulted in fracture of the material.